[PDF] Using R For Data Analysis In Social Sciences - eBooks Review

Using R For Data Analysis In Social Sciences


Using R For Data Analysis In Social Sciences
DOWNLOAD

Download Using R For Data Analysis In Social Sciences PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Using R For Data Analysis In Social Sciences book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Using R For Data Analysis In Social Sciences


Using R For Data Analysis In Social Sciences
DOWNLOAD
Author : Quan Li
language : en
Publisher: Oxford University Press
Release Date : 2018

Using R For Data Analysis In Social Sciences written by Quan Li and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Computers categories.


Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.



Using R For Data Analysis In Social Sciences


Using R For Data Analysis In Social Sciences
DOWNLOAD
Author : Quan Li
language : en
Publisher: Oxford University Press
Release Date : 2018-05-09

Using R For Data Analysis In Social Sciences written by Quan Li and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-09 with Political Science categories.


Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.



Applied Statistics Using R


Applied Statistics Using R
DOWNLOAD
Author : Mehmet Mehmetoglu
language : en
Publisher: SAGE
Release Date : 2021-11-10

Applied Statistics Using R written by Mehmet Mehmetoglu and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-10 with Social Science categories.


If you want to learn to use R for data analysis but aren’t sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors’ own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Quantitative Social Science


Quantitative Social Science
DOWNLOAD
Author : Kosuke Imai
language : en
Publisher: Princeton University Press
Release Date : 2021-03-16

Quantitative Social Science written by Kosuke Imai and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-16 with Political Science categories.


"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--



Quantitative Social Science Data With R


Quantitative Social Science Data With R
DOWNLOAD
Author : Brian J. Fogarty
language : en
Publisher: SAGE
Release Date : 2018-11-24

Quantitative Social Science Data With R written by Brian J. Fogarty and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-24 with Reference categories.


Relevant, engaging, and packed with student-focused learning features, this book provides the basic step-by-step introduction to quantitative research and data every student needs.



Theory Based Data Analysis For The Social Sciences


Theory Based Data Analysis For The Social Sciences
DOWNLOAD
Author : Carol S. Aneshensel
language : en
Publisher: SAGE
Release Date : 2013

Theory Based Data Analysis For The Social Sciences written by Carol S. Aneshensel and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Reference categories.


This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.



Programming With Python For Social Scientists


Programming With Python For Social Scientists
DOWNLOAD
Author : Phillip D. Brooker
language : en
Publisher: SAGE
Release Date : 2019-12-09

Programming With Python For Social Scientists written by Phillip D. Brooker and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-09 with Computers categories.


Programming with Python for Social Scientists offers a vital foundation to one of the most popular programming tools in computer science, specifically for social science researchers, assuming no prior coding knowledge.



Text Analysis With R


Text Analysis With R
DOWNLOAD
Author : Matthew L. Jockers
language : en
Publisher: Springer Nature
Release Date : 2020-03-30

Text Analysis With R written by Matthew L. Jockers and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-30 with Computers categories.


Now in its second edition, Text Analysis with R provides a practical introduction to computational text analysis using the open source programming language R. R is an extremely popular programming language, used throughout the sciences; due to its accessibility, R is now used increasingly in other research areas. In this volume, readers immediately begin working with text, and each chapter examines a new technique or process, allowing readers to obtain a broad exposure to core R procedures and a fundamental understanding of the possibilities of computational text analysis at both the micro and the macro scale. Each chapter builds on its predecessor as readers move from small scale “microanalysis” of single texts to large scale “macroanalysis” of text corpora, and each concludes with a set of practice exercises that reinforce and expand upon the chapter lessons. The book’s focus is on making the technical palatable and making the technical useful and immediately gratifying. Text Analysis with R is written with students and scholars of literature in mind but will be applicable to other humanists and social scientists wishing to extend their methodological toolkit to include quantitative and computational approaches to the study of text. Computation provides access to information in text that readers simply cannot gather using traditional qualitative methods of close reading and human synthesis. This new edition features two new chapters: one that introduces dplyr and tidyr in the context of parsing and analyzing dramatic texts to extract speaker and receiver data, and one on sentiment analysis using the syuzhet package. It is also filled with updated material in every chapter to integrate new developments in the field, current practices in R style, and the use of more efficient algorithms.



Mastering Data Analysis With R


Mastering Data Analysis With R
DOWNLOAD
Author : Gergely Daróczi
language : en
Publisher:
Release Date : 2015

Mastering Data Analysis With R written by Gergely Daróczi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Data mining categories.


Gain sharp insights into your data and solve real-world data science problems with R--from data munging to modeling and visualizationAbout This Book* Handle your data with precision and care for optimal business intelligence* Restructure and transform your data to inform decision-making* Packed with practical advice and tips to help you get to grips with data miningWho This Book Is ForIf you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic.What You Will Learn* Connect to and load data from R's range of powerful databases* Successfully fetch and parse structured and unstructured data* Transform and restructure your data with efficient R packages* Define and build complex statistical models with glm* Develop and train machine learning algorithms* Visualize social networks and graph data* Deploy supervised and unsupervised classification algorithms* Discover how to visualize spatial data with RIn DetailR is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently.This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage.Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods.Style and approachCovering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.