Utilizing Ai And Machine Learning In Financial Analysis

DOWNLOAD
Download Utilizing Ai And Machine Learning In Financial Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Utilizing Ai And Machine Learning In Financial Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Utilizing Ai And Machine Learning In Financial Analysis
DOWNLOAD
Author : Dina Darwish
language : en
Publisher:
Release Date : 2025
Utilizing Ai And Machine Learning In Financial Analysis written by Dina Darwish and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025 with categories.
Utilizing Ai And Machine Learning In Financial Analysis
DOWNLOAD
Author : Darwish, Dina
language : en
Publisher: IGI Global
Release Date : 2025-01-21
Utilizing Ai And Machine Learning In Financial Analysis written by Darwish, Dina and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-21 with Business & Economics categories.
Machine learning models can imitate the cognitive process by assimilating knowledge from data and employing it to interpret and analyze information. Machine learning methods facilitate the comprehension of vast amounts of data and reveal significant patterns incorporated within it. This data is utilized to optimize financial business operations, facilitate well-informed judgements, and aid in predictive endeavors. Financial institutions utilize it to enhance pricing, minimize risks stemming from human error, mechanize repetitive duties, and comprehend client behavior. Utilizing AI and Machine Learning in Financial Analysis explores new trends in machine learning and artificial intelligence implementations in the financial sector. It examines techniques in financial analysis using intelligent technologies for improved business services. This book covers topics such as customer relations, predictive analytics, and fraud detection, and is a useful resource for computer engineers, security professionals, business owners, accountants, academicians, data scientists, and researchers.
Machine Learning In Finance
DOWNLOAD
Author : Matthew F. Dixon
language : en
Publisher: Springer Nature
Release Date : 2020-07-01
Machine Learning In Finance written by Matthew F. Dixon and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-01 with Business & Economics categories.
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Disrupting Finance
DOWNLOAD
Author : Theo Lynn
language : en
Publisher: Springer
Release Date : 2018-12-06
Disrupting Finance written by Theo Lynn and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-06 with Business & Economics categories.
This open access Pivot demonstrates how a variety of technologies act as innovation catalysts within the banking and financial services sector. Traditional banks and financial services are under increasing competition from global IT companies such as Google, Apple, Amazon and PayPal whilst facing pressure from investors to reduce costs, increase agility and improve customer retention. Technologies such as blockchain, cloud computing, mobile technologies, big data analytics and social media therefore have perhaps more potential in this industry and area of business than any other. This book defines a fintech ecosystem for the 21st century, providing a state-of-the art review of current literature, suggesting avenues for new research and offering perspectives from business, technology and industry.
Advances In Financial Machine Learning
DOWNLOAD
Author : Marcos Lopez de Prado
language : en
Publisher: John Wiley & Sons
Release Date : 2018-02-21
Advances In Financial Machine Learning written by Marcos Lopez de Prado and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-21 with Business & Economics categories.
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Machine Learning For Financial Risk Management With Python
DOWNLOAD
Author : Abdullah Karasan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-12-07
Machine Learning For Financial Risk Management With Python written by Abdullah Karasan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-07 with Computers categories.
Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models
Human In The Loop Machine Learning
DOWNLOAD
Author : Robert (Munro) Monarch
language : en
Publisher: Simon and Schuster
Release Date : 2021-07-20
Human In The Loop Machine Learning written by Robert (Munro) Monarch and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-20 with Computers categories.
Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. Summary Most machine learning systems that are deployed in the world today learn from human feedback. However, most machine learning courses focus almost exclusively on the algorithms, not the human-computer interaction part of the systems. This can leave a big knowledge gap for data scientists working in real-world machine learning, where data scientists spend more time on data management than on building algorithms. Human-in-the-Loop Machine Learning is a practical guide to optimizing the entire machine learning process, including techniques for annotation, active learning, transfer learning, and using machine learning to optimize every step of the process. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. About the book Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. You’ll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You’ll learn to create training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows. What's inside Identifying the right training and evaluation data Finding and managing people to annotate data Selecting annotation quality control strategies Designing interfaces to improve accuracy and efficiency About the author Robert (Munro) Monarch is a data scientist and engineer who has built machine learning data for companies such as Apple, Amazon, Google, and IBM. He holds a PhD from Stanford. Robert holds a PhD from Stanford focused on Human-in-the-Loop machine learning for healthcare and disaster response, and is a disaster response professional in addition to being a machine learning professional. A worked example throughout this text is classifying disaster-related messages from real disasters that Robert has helped respond to in the past. Table of Contents PART 1 - FIRST STEPS 1 Introduction to human-in-the-loop machine learning 2 Getting started with human-in-the-loop machine learning PART 2 - ACTIVE LEARNING 3 Uncertainty sampling 4 Diversity sampling 5 Advanced active learning 6 Applying active learning to different machine learning tasks PART 3 - ANNOTATION 7 Working with the people annotating your data 8 Quality control for data annotation 9 Advanced data annotation and augmentation 10 Annotation quality for different machine learning tasks PART 4 - HUMAN–COMPUTER INTERACTION FOR MACHINE LEARNING 11 Interfaces for data annotation 12 Human-in-the-loop machine learning products
Machine Learning In Finance
DOWNLOAD
Author : Musa Gün
language : en
Publisher: Springer Nature
Release Date : 2025-03-29
Machine Learning In Finance written by Musa Gün and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-29 with Business & Economics categories.
This book discusses the evolution of technical features in decentralized finance and focuses on machine-learning finance in emerging economies. As technological advancement evolves at an unpredictable pace, the financial industry, like every other sector, must adapt accordingly. Furthermore, the rapid expansion of diverse financial products and services is creating new applications and markets. Alongside technological progress, the exploration of complex patterns in vast amounts of data, known as big data, is facilitated by its commonly acknowledged characteristics: volume, variety, veracity, value, and velocity. Overall, machine learning has become crucial in the financial industry, allowing businesses to automate operations, gain insights from data, and make more informed decisions in real time. This edited book covers algorithmic trading, risk management, fraud detection, customer service and personalization, portfolio management, credit scoring, sentiment analysis, and algorithmic pricing. The book connects theoretical concepts with practical real-world applications, benefiting professionals looking to enhance their proficiency in using these methods efficiently. It offers insightful guidance for theorists, market participants, and policymakers by exploring financial theories and practices in light of contemporary machine-learning approaches, with a special emphasis on emerging economies.
Machine Learning And Data Science Blueprints For Finance
DOWNLOAD
Author : Hariom Tatsat
language : en
Publisher: O'Reilly Media
Release Date : 2020
Machine Learning And Data Science Blueprints For Finance written by Hariom Tatsat and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Finance categories.
Machine learning and data science will significantly transform the finance industry in the next few years. With this practical guide, professionals at hedge funds, investment and retail banks, and fintech firms will learn how to build ML algorithms crucial to this industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP).
Artificial Intelligence And Machine Learning Powered Smart Finance
DOWNLOAD
Author : Taneja, Sanjay
language : en
Publisher: IGI Global
Release Date : 2024-02-12
Artificial Intelligence And Machine Learning Powered Smart Finance written by Taneja, Sanjay and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-12 with Business & Economics categories.
In the field of finance, the pervasive influence of algorithms has transformed the very fabric of the industry. Today, over 75% of trades are orchestrated by algorithms, making them the linchpin for trade automation, predictions, and decision-making. This algorithmic reliance, while propelling financial services into unprecedented efficiency, has also ushered in a host of challenges. As the financial sector becomes increasingly algorithm-driven, concerns about risk assessment, market manipulation, and the ethical implications of automated decision-making have taken center stage. Artificial Intelligence and Machine Learning-Powered Smart Finance, meticulously examines the intersection of computational finance and advanced algorithms and the challenges associated with this technology. As algorithms permeate various facets of financial services, the book takes a deep dive into their applications, spanning forecasting, portfolio optimization, market trends analysis, and cryptoanalysis. It sheds light on the role of AI-based algorithms in personnel selection, implementing trusted financial services, developing recommendation systems for financial platforms, and detecting fraud, presenting a compelling case for the integration of innovative solutions in the financial sector. As the book unravels the intricate tapestry of algorithmic applications in finance, it also illuminates the ethical considerations and governance frameworks essential for navigating the delicate balance between technological innovation and responsible financial practices.