[PDF] Visual Object Tracking Using Deep Learning - eBooks Review

Visual Object Tracking Using Deep Learning


Visual Object Tracking Using Deep Learning
DOWNLOAD

Download Visual Object Tracking Using Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Visual Object Tracking Using Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Visual Object Tracking Using Deep Learning


Visual Object Tracking Using Deep Learning
DOWNLOAD
Author : Ashish Kumar
language : en
Publisher: CRC Press
Release Date : 2023-11-20

Visual Object Tracking Using Deep Learning written by Ashish Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-20 with Technology & Engineering categories.


This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also: Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methods Elaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexity Illustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenarios Explores the future research directions for visual tracking by analyzing the real-time applications The book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology.



Visual Object Tracking With Deep Neural Networks


Visual Object Tracking With Deep Neural Networks
DOWNLOAD
Author : Pier Luigi Mazzeo
language : en
Publisher: BoD – Books on Demand
Release Date : 2019-12-18

Visual Object Tracking With Deep Neural Networks written by Pier Luigi Mazzeo and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-18 with Computers categories.


Visual object tracking (VOT) and face recognition (FR) are essential tasks in computer vision with various real-world applications including human-computer interaction, autonomous vehicles, robotics, motion-based recognition, video indexing, surveillance and security. This book presents the state-of-the-art and new algorithms, methods, and systems of these research fields by using deep learning. It is organized into nine chapters across three sections. Section I discusses object detection and tracking ideas and algorithms; Section II examines applications based on re-identification challenges; and Section III presents applications based on FR research.



Deep Learning In Object Detection And Recognition


Deep Learning In Object Detection And Recognition
DOWNLOAD
Author : Xiaoyue Jiang
language : en
Publisher: Springer
Release Date : 2020-11-27

Deep Learning In Object Detection And Recognition written by Xiaoyue Jiang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-27 with Computers categories.


This book discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks.



Visual Object Tracking From Correlation Filter To Deep Learning


Visual Object Tracking From Correlation Filter To Deep Learning
DOWNLOAD
Author : Weiwei Xing
language : en
Publisher: Springer Nature
Release Date : 2021-11-18

Visual Object Tracking From Correlation Filter To Deep Learning written by Weiwei Xing and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-18 with Computers categories.


The book focuses on visual object tracking systems and approaches based on correlation filter and deep learning. Both foundations and implementations have been addressed. The algorithm, system design and performance evaluation have been explored for three kinds of tracking methods including correlation filter based methods, correlation filter with deep feature based methods, and deep learning based methods. Firstly, context aware and multi-scale strategy are presented in correlation filter based trackers; then, long-short term correlation filter, context aware correlation filter and auxiliary relocation in SiamFC framework are proposed for combining correlation filter and deep learning in visual object tracking; finally, improvements in deep learning based trackers including Siamese network, GAN and reinforcement learning are designed. The goal of this book is to bring, in a timely fashion, the latest advances and developments in visual object tracking, especially correlation filter and deep learning based methods, which is particularly suited for readers who are interested in the research and technology innovation in visual object tracking and related fields.



Deep Learning For Computer Vision


Deep Learning For Computer Vision
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2019-04-04

Deep Learning For Computer Vision written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-04 with Computers categories.


Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.



Real World Applications Of Genetic Algorithms


Real World Applications Of Genetic Algorithms
DOWNLOAD
Author : Olympia Roeva
language : en
Publisher: BoD – Books on Demand
Release Date : 2012-03-07

Real World Applications Of Genetic Algorithms written by Olympia Roeva and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-07 with Computers categories.


The book addresses some of the most recent issues, with the theoretical and methodological aspects, of evolutionary multi-objective optimization problems and the various design challenges using different hybrid intelligent approaches. Multi-objective optimization has been available for about two decades, and its application in real-world problems is continuously increasing. Furthermore, many applications function more effectively using a hybrid systems approach. The book presents hybrid techniques based on Artificial Neural Network, Fuzzy Sets, Automata Theory, other metaheuristic or classical algorithms, etc. The book examines various examples of algorithms in different real-world application domains as graph growing problem, speech synthesis, traveling salesman problem, scheduling problems, antenna design, genes design, modeling of chemical and biochemical processes etc.



Object Tracking Technology


Object Tracking Technology
DOWNLOAD
Author : Ashish Kumar
language : en
Publisher: Springer Nature
Release Date : 2023-09-25

Object Tracking Technology written by Ashish Kumar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-25 with Computers categories.


With the increase in urban population, it became necessary to keep track of the object of interest. In favor of SDGs for sustainable smart city, with the advancement in technology visual tracking extends to track multi-target present in the scene rather estimating location for single target only. In contrast to single object tracking, multi-target introduces one extra step of detection. Tracking multi-target includes detecting and categorizing the target into multiple classes in the first frame and provides each individual target an ID to keep its track in the subsequent frames of a video stream. One category of multi-target algorithms exploits global information to track the target of the detected target. On the other hand, some algorithms consider present and past information of the target to provide efficient tracking solutions. Apart from these, deep leaning-based algorithms provide reliable and accurate solutions. But, these algorithms are computationally slow when applied in real-time. This book presents and summarizes the various visual tracking algorithms and challenges in the domain. The various feature that can be extracted from the target and target saliency prediction is also covered. It explores a comprehensive analysis of the evolution from traditional methods to deep learning methods, from single object tracking to multi-target tracking. In addition, the application of visual tracking and the future of visual tracking can also be introduced to provide the future aspects in the domain to the reader. This book also discusses the advancement in the area with critical performance analysis of each proposed algorithm. This book will be formulated with intent to uncover the challenges and possibilities of efficient and effective tracking of single or multi-object, addressing the various environmental and hardware challenges. The intended audience includes academicians, engineers, postgraduate students, developers, professionals, military personals, scientists, data analysts, practitioners, and people who are interested in exploring more about tracking.· Another projected audience are the researchers and academicians who identify and develop methodologies, frameworks, tools, and applications through reference citations, literature reviews, quantitative/qualitative results, and discussions.



Practical Machine Learning For Computer Vision


Practical Machine Learning For Computer Vision
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-07-21

Practical Machine Learning For Computer Vision written by Valliappa Lakshmanan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-21 with Computers categories.


This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models



Visual Object Tracking From Correlation Filter To Deep Learning


Visual Object Tracking From Correlation Filter To Deep Learning
DOWNLOAD
Author : Weiwei Xing
language : en
Publisher:
Release Date : 2021

Visual Object Tracking From Correlation Filter To Deep Learning written by Weiwei Xing and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.


The book focuses on visual object tracking systems and approaches based on correlation filter and deep learning. Both foundations and implementations have been addressed. The algorithm, system design and performance evaluation have been explored for three kinds of tracking methods including correlation filter based methods, correlation filter with deep feature based methods, and deep learning based methods. Firstly, context aware and multi-scale strategy are presented in correlation filter based trackers; then, long-short term correlation filter, context aware correlation filter and auxiliary relocation in SiamFC framework are proposed for combining correlation filter and deep learning in visual object tracking; finally, improvements in deep learning based trackers including Siamese network, GAN and reinforcement learning are designed. The goal of this book is to bring, in a timely fashion, the latest advances and developments in visual object tracking, especially correlation filter and deep learning based methods, which is particularly suited for readers who are interested in the research and technology innovation in visual object tracking and related fields.