Wavelets Made Easy

DOWNLOAD
Download Wavelets Made Easy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wavelets Made Easy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Wavelets Made Easy
DOWNLOAD
Author : Yves Nievergelt
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-04-28
Wavelets Made Easy written by Yves Nievergelt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-04-28 with Mathematics categories.
This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data. The material presented here addresses the au dience of engineers, financiers, scientists, and students looking for explanations of wavelets at the undergraduate level. It requires only a working knowledge or memories of a first course in linear algebra and calculus. The first part of the book answers the following two questions: What are wavelets? Wavelets extend Fourier analysis. How are wavelets computed? Fast transforms compute them. To show the practical significance of wavelets, the book also provides transitions into several applications: analysis (detection of crashes, edges, or other events), compression (reduction of storage), smoothing (attenuation of noise), and syn thesis (reconstruction after compression or other modification). Such applications include one-dimensional signals (sounds or other time-series), two-dimensional arrays (pictures or maps), and three-dimensional data (spatial diffusion). The ap plications demonstrated here do not constitute recipes for real implementations, but aim only at clarifying and strengthening the understanding of the mathematics of wavelets.
Wavelets Made Easy
DOWNLOAD
Author : Yves Nievergelt
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-27
Wavelets Made Easy written by Yves Nievergelt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-27 with Mathematics categories.
This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data. The material presented here addresses the au dience of engineers, financiers, scientists, and students looking for explanations of wavelets at the undergraduate level. It requires only a working knowledge or memories of a first course in linear algebra and calculus. The first part of the book answers the following two questions: What are wavelets? Wavelets extend Fourier analysis. How are wavelets computed? Fast transforms compute them. To show the practical significance of wavelets, the book also provides transitions into several applications: analysis (detection of crashes, edges, or other events), compression (reduction of storage), smoothing (attenuation of noise), and syn thesis (reconstruction after compression or other modification). Such applications include one-dimensional signals (sounds or other time-series), two-dimensional arrays (pictures or maps), and three-dimensional data (spatial diffusion). The ap plications demonstrated here do not constitute recipes for real implementations, but aim only at clarifying and strengthening the understanding of the mathematics of wavelets.
An Introduction To Wavelets
DOWNLOAD
Author : Charles K. Chui
language : en
Publisher: Elsevier
Release Date : 2016-06-03
An Introduction To Wavelets written by Charles K. Chui and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-03 with Science categories.
Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.
Applied Wavelet Analysis With S Plus
DOWNLOAD
Author : Andrew Bruce
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-06-20
Applied Wavelet Analysis With S Plus written by Andrew Bruce and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-06-20 with Computers categories.
Using a visual data analysis approach, wavelet concepts are explained in a way that is intuitive and easy to understand. Furthermore, in addition to wavelets, a whole range of related signal processing techniques such as wavelet packets, local cosine analysis, and matching pursuits are covered, and applications of wavelet analysis are illustrated -including nonparametric function estimation, digital image compression, and time-frequency signal analysis. This book and software package is intended for a broad range of data analysts, scientists, and engineers. While most textbooks on the subject presuppose advanced training in mathematics, this book merely requires that readers be familiar with calculus and linear algebra at the undergraduate level.
An Introduction To Wavelet Analysis
DOWNLOAD
Author : David F. Walnut
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-11
An Introduction To Wavelet Analysis written by David F. Walnut and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-11 with Mathematics categories.
An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows us to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical pre-requisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: *Rigorous proofs with consistent assumptions on the mathematical background of the reader; does not assume familiarity with Hilbert spaces or Lebesgue measure * Complete background material on (Fourier Analysis topics) Fourier Analysis * Wavelets are presented first on the continuous domain and later restricted to the discrete domain, for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory " provides a guide to current literature on the topic * Over 170 exercises guide the reader through the text. The book is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals. All readers will find
Wavelets
DOWNLOAD
Author : Peter Nickolas
language : en
Publisher: Cambridge University Press
Release Date : 2017-01-11
Wavelets written by Peter Nickolas and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-11 with Mathematics categories.
Makes the intrinsically advanced theory of wavelets accessible to senior undergraduate students with a mathematical background.
Wavelets And Signal Processing
DOWNLOAD
Author : Hans-Georg Stark
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-04-01
Wavelets And Signal Processing written by Hans-Georg Stark and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-04-01 with Technology & Engineering categories.
Professor Noubari's recommendation: "Professor Starks book provides an effective entry into the field for engineering students who have little or no prior knowledge of this important subject. Avaibility of collection of computer codes and mfiles in combination with topics of the book, makes the book highly valuable to enhance student learning of the subject matter."
A First Course In Wavelets With Fourier Analysis
DOWNLOAD
Author : Albert Boggess
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20
A First Course In Wavelets With Fourier Analysis written by Albert Boggess and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Mathematics categories.
A comprehensive, self-contained treatment of Fourier analysis and wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature: The development of a Fourier series, Fourier transform, and discrete Fourier analysis Improved sections devoted to continuous wavelets and two-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signal processing The construction, smoothness, and computation of Daubechies' wavelets Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.
Wavelet And Wave Analysis As Applied To Materials With Micro Or Nanostructure
DOWNLOAD
Author : Carlo Cattani
language : en
Publisher: World Scientific
Release Date : 2007
Wavelet And Wave Analysis As Applied To Materials With Micro Or Nanostructure written by Carlo Cattani and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Science categories.
This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three.All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems that are proposed in this book. By combining these new scientific concepts into a unitary model and enlightening readers on this pioneering field of research, readers will hopefully be inspired to explore the more advanced aspects of this promising scientific direction. The application of wavelet analysis to nanomaterials and waves in nanocomposites can be very appealing to both specialists working on theoretical developments in wavelets as well as specialists applying these methods and experiments in the mechanics of materials.
Noise Reduction By Wavelet Thresholding
DOWNLOAD
Author : Maarten Jansen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Noise Reduction By Wavelet Thresholding written by Maarten Jansen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Technology & Engineering categories.
Wavelet methods have become a widely spread tool in signal and image process ing tasks. This book deals with statistical applications, especially wavelet based smoothing. The methods described in this text are examples of non-linear and non parametric curve fitting. The book aims to contribute to the field both among statis ticians and in the application oriented world (including but not limited to signals and images). Although it also contains extensive analyses of some existing methods, it has no intention whatsoever to be a complete overview of the field: the text would show too much bias towards my own algorithms. I rather present new material and own insights in the questions involved with wavelet based noise reduction. On the other hand, the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: sparsity, locality and multiresolution. Nearly all wavelet based methods exploit at least one of these properties in some or the other way. These notes present research results of the Belgian Programme on Interuniver sity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with me. My research was financed by a grant (1995 - 1999) from the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT).