Wearable Bioelectronics

DOWNLOAD
Download Wearable Bioelectronics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Wearable Bioelectronics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Wearable Bioelectronics
DOWNLOAD
Author : Anthony P.F. Turner
language : en
Publisher: Elsevier
Release Date : 2019-11-26
Wearable Bioelectronics written by Anthony P.F. Turner and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-26 with Technology & Engineering categories.
Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications. - Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare - Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin - Examines and discusses the future of wearable bioelectronics - Addresses the wearable electronics market as a development of the healthcare industry
Wearable Devices
DOWNLOAD
Author : Noushin Nasiri
language : en
Publisher: BoD – Books on Demand
Release Date : 2019-12-04
Wearable Devices written by Noushin Nasiri and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-04 with Technology & Engineering categories.
Wearable technologies are equipped with microchips and sensors capable of tracking and wirelessly communicating information in real time. With innovations on the horizon, the future of wearable devices will go beyond answering calls or counting our steps to providing us with sophisticated wearable gadgets capable of addressing fundamental and technological challenges. This book investigates the development of wearable technologies across a range of applications from educational assessment to health, biomedical sensing, and energy harvesting. Furthermore, it discusses some key innovations in micro/nano fabrication of these technologies, their basic working mechanisms, and the challenges facing their progress.
Stretchable Bioelectronics For Medical Devices And Systems
DOWNLOAD
Author : John A. Rogers
language : en
Publisher: Springer
Release Date : 2016-03-31
Stretchable Bioelectronics For Medical Devices And Systems written by John A. Rogers and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-31 with Technology & Engineering categories.
This book highlights recent advances in soft and stretchable biointegrated electronics. A renowned group of authors address key ideas in the materials, processes, mechanics, and devices of soft and stretchable electronics; the wearable electronics systems; and bioinspired and implantable biomedical electronics. Among the topics discussed are liquid metals, stretchable and flexible energy sources, skin-like devices, in vitro neural recording, and more. Special focus is given to recent advances in extremely soft and stretchable bio-inspired electronics with real-world clinical studies that validate the technology. Foundational theoretical and experimental aspects are also covered in relation to the design and application of these biointegrated electronics systems. This is an ideal book for researchers, engineers, and industry professionals involved in developing healthcare devices, medical tools and related instruments relevant to various clinical practices.
Bioelectronics
DOWNLOAD
Author : Anuj Kumar
language : en
Publisher: CRC Press
Release Date : 2022-12-08
Bioelectronics written by Anuj Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-08 with Technology & Engineering categories.
Bioelectronics is emerging as a new area of research where electronics can selectively detect, record, and monitor physiological signals. This is a rapidly expanding area of medical research, that relies heavily on multidisciplinary technology development and cutting-edge research in chemical, biological, engineering, and physical science. This book provides extensive information on the (i) fundamental concepts of bioelectronics, (ii) materials for the developments of bioelectronics such as implantable electronics, self-powered devices, bioelectronic sensors, flexible bioelectronics, etc, and (iii) an overview of the trends and gathering of the latest bioelectronic progress. This book will broaden our knowledge about newer technologies and processes used in bioelectronics.
Smart And Connected Wearable Electronics
DOWNLOAD
Author : Woon-Hong Yeo
language : en
Publisher: Elsevier
Release Date : 2023-11-13
Smart And Connected Wearable Electronics written by Woon-Hong Yeo and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-13 with Technology & Engineering categories.
Approx.630 pagesApprox.630 pages
Tailored Light Emitters For Biomedical Applications
DOWNLOAD
Author : Nelson Oshogwue Etafo
language : en
Publisher: Springer Nature
Release Date : 2025-04-28
Tailored Light Emitters For Biomedical Applications written by Nelson Oshogwue Etafo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-28 with Technology & Engineering categories.
This book provides a comprehensive guide to the development, testing, and medical applications of photoluminescent materials. It covers key material classes—such as quantum dots, organic fluorophores, and lanthanide-doped nanoparticles—and explores how their light emission properties can be tailored for medical use. Readers will find in-depth discussions on biocompatibility strategies, targeted drug delivery with light-triggered release mechanisms, in vivo imaging for real-time therapeutic monitoring, and advanced diagnostic techniques like biosensors and fluorescence assays. The book also delves into photoluminescence-based therapies, including antibacterial treatments, photoimmunotherapy, and cancer phototherapy, offering researchers and practitioners the tools to develop safe and effective next-generation medical technologies.
Low Power Wearable Healthcare Sensors
DOWNLOAD
Author : R. Simon Sherratt
language : en
Publisher: MDPI
Release Date : 2020-12-29
Low Power Wearable Healthcare Sensors written by R. Simon Sherratt and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-29 with Science categories.
Advances in technology have produced a range of on-body sensors and smartwatches that can be used to monitor a wearer’s health with the objective to keep the user healthy. However, the real potential of such devices not only lies in monitoring but also in interactive communication with expert-system-based cloud services to offer personalized and real-time healthcare advice that will enable the user to manage their health and, over time, to reduce expensive hospital admissions. To meet this goal, the research challenges for the next generation of wearable healthcare devices include the need to offer a wide range of sensing, computing, communication, and human–computer interaction methods, all within a tiny device with limited resources and electrical power. This Special Issue presents a collection of six papers on a wide range of research developments that highlight the specific challenges in creating the next generation of low-power wearable healthcare sensors.
Tailoring Conducting Polymer Interface For Sensing And Biosensing
DOWNLOAD
Author : Lingyin Meng
language : en
Publisher: Linköping University Electronic Press
Release Date : 2020-09-17
Tailoring Conducting Polymer Interface For Sensing And Biosensing written by Lingyin Meng and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-17 with categories.
The routine measurement of significant physiological and biochemical parameters has become increasingly important for health monitoring especially in the cases of elderly people, infants, patients with chronic diseases, athletes and soldiers etc. Monitoring is used to assess both physical fitness level and for disease diagnosis and treatment. Considerable attention has been paid to electrochemical sensors and biosensors as point-of-care diagnostic devices for healthcare management because of their fast response, low-cost, high specificity and ease of operation. The analytical performance of such devices is significantly driven by the high-quality sensing interface, involving signal transduction at the transducer interface and efficient coupling of biomolecules at the transducer bio-interface for specific analyte recognition. The discovery of functional and structured materials, such as metallic and carbon nanomaterials (e.g. gold and graphene), has facilitated the construction of high-performance transducer interfaces which benefit from their unique physicochemical properties. Further exploration of advanced materials remains highly attractive to achieve well-designed and tailored interfaces for electrochemical sensing and biosensing driven by the emerging needs and demands of the “Internet of Things” and wearable sensors. Conducting polymers (CPs) are emerging functional polymers with extraordinary redox reversibility, electronic/ionic conductivity and mechanical properties, and show considerable potential as a transducer material in sensing and biosensing. While the intrinsic electrocatalytic property of the CPs is limited, especially for the bulk polymer, tailoring of CPs with controlled structure and efficient dopants could improve the electrochemical performance of a transducer interface by delivering a larger surface area and enhanced electrocatalytic property. In addition, the rich synthetic chemistry of CPs endows them with versatile functional groups to modulate the interfacial properties of the polymer for effective biomolecule coupling, thus bridging organic electronics and bioelectrochemistry. Moreover, the soft-material characteristics of CPs enable their use for the development of flexible and wearable sensing platforms which are inexpensive and light-weight, compared to conventional rigid materials, such as carbons, metals and semiconductors. This thesis focuses on the exploration of CPs for electrochemical sensing and biosensing with improved sensitivity, selectivity and stability by tailoring CP interfaces at different levels, including the CP-based transduction interface, CP-based bio-interface and CP-based device interface. First, we demonstrate different strategies for tailoring the physicochemical properties of poly (3,4-ethylenedioxythiophene) (PEDOT) beyond its intrinsic properties, via charge effects, structural effects and by the use of hybrid materials, as a CP-based transduction interface to improve sensing performance of various analytes. 1) A positively-charged PEDOT interface, and a negatively-charged carboxylic-acid-functionalised PEDOT (PEDOT:COOH) interface were developed to modulate the electrode kinetics for oppositely-charged analytes, e.g. negatively-charged nicotinamide adenine dinucleotide (NADH) and positively-charged dopamine (DA), respectively. These interfaces displayed high sensitivity and wide linear range towards the analytes due to the electrostatic attraction effect. 2) Various structured PEDOT including porous microspheres and nanofibres were synthesised via hard-template and soft-template methods, respectively, and were employed as building blocks for a hierarchical PEDOT and 3D nanofibrous PEDOT transduction interface, that facilitated signal transduction for NADH. 3) A PEDOT hybrid material interface was developed via using a novel bi-functional graphene oxide derivative with high reduction degree and negatively-charged sulphonate terminal functionality (S-RGO) as dopant to create PEDOT:S-RGO which delivered an enhanced electrochemical performance for various analytes. Based on the established CP-based transduction interface, biomolecules (e.g. enzymes) could be coupled to the CP surface to create CP-based bio-interfaces for biosensing. The immobilisation of enzyme was realised via either covalent bonding to a PEDOT derivative bearing a -COOH group (PEDOT-COOH) through EDC/NHS chemistry, or by physical absorption into the 3D porous PEDOT structure. The CP-based bio-interfaces were used to demonstrate the stable immobilisation of two different types of enzymes, i.e. lactate dehydrogenase and lactate oxidase, achieving the biosensing of analytes by relay bioelectrochemical signal transduction. Together, CP was employed as the CP-based device interface for the fabrication of a flexible and wearable biosensing device. A 3D honeycomb-structured graphene network was generated in-situ on a flexible polyimide surface by mask-free patterning using laser irradiation. The substrate was then reinforced with PEDOT as a polymeric binder to stabilise the 3D porous network by adhesion and binding, thus minimising the delamination of the biosensing interface under deformation and enhancing the mechanical behaviours for use in flexible and wearable devices. The subsequent nanoscale-coating of Prussian blue and immobilisation of enzyme into the 3D porous network provided a flexible platform for wearable electrochemical biosensors to detect lactate in sweat. Rutinmässig övervakning av hälsorelaterade fysiologiska och biokemiska parametrar har blivit allt viktigare för ett stort antal människor bland annat seniorer, spädbarn, patienter med kroniska sjukdomar, idrottare, soldater och med flera, på både en fysisk nivå för förebyggande av sjukdomar samt på en medicinsk nivå för diagnos och behandling av sjukdomar. Stor uppmärksamhet har lagts på utveckling av elektrokemiska sensorer och biosensorer som point-of-care (PoC) diagnostiska enheter for rutinmässig sjukvårdsledning genom deras snabba svar, låga kostnad, höga specificitet och enkla drift. Deras analytiska funktioner drivs av avkänningsgranssnittet vilket involverar signaltransduktion vid transducer-gränssnittet och effektiv koppling av biomolekyler till transducer-biogränssnittet för specifik analytigenkänning. Upptäckten av konventionella funktionella och strukturerade material, t.ex. metalliska nanopartiklar, kolnanorör och grafen, har underlättat konstruktionen av transducergränssnitt med hög prestanda på grund av deras unika fysiokemiska egenskaper. Ytterligare forskning av avancerade material ar önskvärt for att uppnå ett väldesignat och skräddarsytt gränsnitt for elektrokemisk avkänning och biosensering for Internet of Things och klädd sensorer. Ledande polymerer (LP) ar en typ av nya funktionella polymerer med extraordinär redoxomvändbarhet, elektronisk/jonisk ledningsförmåga och mekaniska egenskaper, som uppvisar betydande potential som ett givarmaterial vid avkänning och biosensering. Medan de inneboende elektrokatalytiska egenskaperna i LP:er är begränsade, speciellt for den skrymmande polymeren, kan skräddarsydda LP:er med kontrollerad struktur och effektiva dopmedel förbättra den elektrokemiska prestandan hos ett givargränssnitt med större ytarea och förbättrade elektrokatalytiska egenskaper. Dessutom ger den syntetiska kemin LP:er mångsidiga funktionella grupper för att modulera gränssnittsegenskaperna för LP:er för att förbättra selektivitet for analytdetektering, såväl som för effektiv biomolekylkoppling som ett biogränssnitt som överbryggar den organiska elektroniken och det biologiska system som stöds av de LP:s organkemiska natur. Dessutom möjliggör de mjuka materialegenskaperna för LP:er för användning i utveckling av en flexibla och bärbara avkänningsplattformar med låg kostnad och lätt vikt, jämfört med konventionella styva material, såsom metaller och halvledare. Denna avhandling fokuserar på utforskning av LP:er för elektrokemisk avkänning och biosensering med förbättrad känslighet, selektivitet och stabilitet genom att skräddarsy LP:s gränssnitt i olika nivåer, inklusive LP-baserat transduktionsgränssnitt, LP-baserat bio-gränssnitt och LP-baserat enhetsgränssnitt. Först demonstrerar vi olika strategier for att skräddarsy fysikalisk-kemiska egenskaper hos poly (3,4-etylendioxytiofen) (PEDOT) som ett LP-baserat transduktionsgränssnitt för avkänning via laddningseffekter, struktureffekter och hybridmaterialeffekter för förbättrad prestanda för olika analyser utöver dess inre egenskaper. 1) Ett positivt laddat hierarkiskt PEDOT-gränssnitt och ett negativt laddat karboxylsyra-funktionaliserad PEDOT (PEDOT: COOH) gränssnitt utvecklades for att modulera gränssnittets kinetik for de motsatt laddade analyterna, t.ex. negativt laddad s-Nicotinamidadeninudukleotid (NADH) respektive positivt laddat dopamin (DA). Den elektrokemiska avkänningsprestandan hos dessa analyser förbättrades baserat på laddningseffekten med högre känslighet och ett bredare linjärt intervall. 2) Med tanke på den väl skrymmande filmbildande egenskapen och den resulterande låga tillgängliga aktiva ytan för PEDOT, syntetiserades olika strukturerade PEDOT inklusive porösa mikrosfärer och nanofibrer via en hård mall respektive en mjuk mall och användes sedan som byggstenar för hierarkiska PEDOT och 3D nanofibrosa PEDOT-transduktionsgränssnitt, vilket underlättar signaltransduktion for NADH. 3) Ett LP-hybridmaterialgränssnitt utvecklades med användning av ett nytt bi-funktionellt grafenoxidderivat med hög reduktionsgrad och negativt laddad sulfonatterminal funktionalitet (S-RGO) med förbättrad elektrokemisk prestanda fär olika analyser. Baserat på det etablerade LP-baserade transduktionsgränssnittet utvecklades sedan de LP-baserade bio-gränssnitten med immobilisering av biomolekyler (t.ex. enzym) för biosensering. Immobiliseringen av enzym på LP-gränssnittet realiserades via antingen kovalent bindning till PEDOT-derivatbärande -COOH-grupper (PEDOT-COOH) genom EDC/NHS-kemi eller fysisk absorption i porösa 3D-PEDOT-strukturer. De LP-biobaserade gränssnitten visar stabil immobilisering av två olika typer av enzymer, d.v.s. laktatdehydrogenas och laktatoxidas, vilket uppnår biosensering av analyter genom en successiv bioelektrokemisk signaltransduktion. Tillsammans användes LP:er som det LP-baserade enhetsgränssnittet för tillverkning av en flexibel och bärbar biosenseringsanordning. Ett tredimensionellt bikakestrukturerat grafennatverk genererades in-situ på den flexibla polyimidytan genom maskfri mönstring med laserbestrålningsteknik. Substratet förstärktes sedan med nanodeponerat PEDOT som ett polymert bindemedel for att stabilisera det porösa 3D-nätverket genom vidhäftning och bindning, vilket sålunda förbättrade det mekaniska beteendet för flexibla och bärbara anordningar. Den sekventiella beläggningen på nanoskala av Preussiskt blått (PB) och immobiliseringen av enzym i det porösa 3Dnatverket minimerade delaminering av biosenseringsgränssnittet vid deformation, vilket försedde en flexibel plattform för en bärbar elektrokemisk biosensor för detektering av laktat i svett med det monterade treelektrodsystemet.
Biobased Materials
DOWNLOAD
Author : Ajay Kumar Mishra
language : en
Publisher: Springer Nature
Release Date : 2022-10-19
Biobased Materials written by Ajay Kumar Mishra and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-19 with Technology & Engineering categories.
This book discusses the extraction, purification, modification, and processing of biobased materials and their various industrial applications, across biomedical, pharmaceutical, construction, and other industries. It includes contributions from experts on hybrid biopolymers and bio-composites, bioactive and biodegradable materials, bio-inert polymers, natural polymers and composites, and metallic natural materials. Therefore, this encyclopedia is a useful reference for scientists, academicians, research scholars, and technologists. Major challenges of biobased materials are their efficient development, cost-effective, and green & environment friendly production/applications. This encyclopedia answers these challenges to professionals and scientists for proper utilization of biobased materials. It presents the recent practices of biobased materials technology in different scientific and engineering domains. It helps the bounded industrial outcomes to reach the general readership of different domains. This encyclopedia bridges the technological gaps between the industrial and academic professionals and the novice young students/scholars. The interdisciplinarity of this encyclopedia makes it unique for a wide readership. The topic of biobased materials is currently popular in the scientific community, working in such following areas as Recycled materials, Renewable materials, Materials for efficiency, Materials for waste treatment, Materials for reduction of environmental load, Materials for easy disposal or recycle, Hazardous free materials, Materials for reducing human health impact, Materials for energy efficiency, Materials for green energy, etc. This is a relatively hot topic in materials science and has strong demands for energy, material and money savings, as well as heavy contamination problems, despite that the area of biobased materials belongs to most important fields of modern science & technology, no important encyclopedias have been published in the area of “biobased materials”
Macro Micro And Nano Biosensors
DOWNLOAD
Author : Mahendra Rai
language : en
Publisher: Springer Nature
Release Date : 2021-01-04
Macro Micro And Nano Biosensors written by Mahendra Rai and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-04 with Medical categories.
This book includes an international group of researchers who present the latest achievements in the field of enzyme, immune system, and microbial and nano-biosensors. It highlights the experimental evidence for formation of biological fuel cells (BFCs)-which has a dual purpose – as a device that produces electricity and the systems which produce it simultaneously cleaning up the environment from polluting organic compounds. Considering the work in the field of macro, micro and nano-biosensors, considerable attention is paid to the use of nanomaterials for the modification of working electrodes. Nanomaterials in some cases can significantly improve the parameters of analytical systems. Readers will be interested in the projection of the presented theoretical and experimental materials in the field of practical application of modern analytical developments. The presented results in many cases imply the possibility of using the created models of macro, micro and nano-biosensors, and biofuel elements in the field of health, and protection/restoration of the environment. It includes information about all existing types of transducers of signals in biosensors – electrochemical, optical and quantum-optics, thermoelectric, data of atomic force microscopy, piezoelectric, and more. On the basis of these principles, descriptions are given about the functioning of macro, micro and nano- biosensors for the detection of compounds used in medicine, detection of compounds that clog the environment, and thus affect human health, for compounds that are potentially the basis for the production of drugs, for the selection of compounds that have medicinal activity, for immunodetection, and to assess the quality of food. These questions form the basis of research carried out in the field of biosensors in the world. Since the described models of biosensors have high sensitivity, high measurement speed and selectivity, the described results attract the attention of both the ordinary reader and business class specialists who create and implement analytical technologies. This book is very useful for researchers in life sciences, chemical sciences, physics, and engineering. In addition, it will be useful for the persons working in industry. Advanced technologies specialists will be attracted by the novelty of the proposed solutions and their relevance and ease of implementation. Since the studies contain sections describing the parameters of different biosensors, BFCs, they are easily navigated into assessing the effectiveness of the practical use of the proposed device. The relevant sections indicate such characteristics as detection ranges, life span, type of biological material used, the method of formation of the bio-receptor part. These parameters are of interest to both developers of new models of biosensors and BFC, and their manufacturers.