[PDF] What S New In Tensorflow 2 0 - eBooks Review

What S New In Tensorflow 2 0


What S New In Tensorflow 2 0
DOWNLOAD

Download What S New In Tensorflow 2 0 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get What S New In Tensorflow 2 0 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



What S New In Tensorflow 2 0


What S New In Tensorflow 2 0
DOWNLOAD
Author : Ajay Baranwal
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-08-12

What S New In Tensorflow 2 0 written by Ajay Baranwal and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-12 with Computers categories.


Get to grips with key structural changes in TensorFlow 2.0 Key FeaturesExplore TF Keras APIs and strategies to run GPUs, TPUs, and compatible APIs across the TensorFlow ecosystemLearn and implement best practices for building data ingestion pipelines using TF 2.0 APIsMigrate your existing code from TensorFlow 1.x to TensorFlow 2.0 seamlesslyBook Description TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly. What you will learnImplement tf.keras APIs in TF 2.0 to build, train, and deploy production-grade modelsBuild models with Keras integration and eager executionExplore distribution strategies to run models on GPUs and TPUsPerform what-if analysis with TensorBoard across a variety of modelsDiscover Vision Kit, Voice Kit, and the Edge TPU for model deploymentsBuild complex input data pipelines for ingesting large training datasetsWho this book is for If you’re a data scientist, machine learning practitioner, deep learning researcher, or AI enthusiast who wants to migrate code to TensorFlow 2.0 and explore the latest features of TensorFlow 2.0, this book is for you. Prior experience with TensorFlow and Python programming is necessary to understand the concepts covered in the book.



Learn Tensorflow 2 0


Learn Tensorflow 2 0
DOWNLOAD
Author : Pramod Singh
language : en
Publisher: Apress
Release Date : 2019-12-17

Learn Tensorflow 2 0 written by Pramod Singh and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-17 with Computers categories.


Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples. The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0. It also demonstrates how to build models using customer estimators. Further, it explains how to use TensorFlow 2.0 API to build machine learning and deep learning models for image classification using the standard as well as custom parameters. You'll review sequence predictions, saving, serving, deploying, and standardized datasets, and then deploy these models to production. All the code presented in the book will be available in the form of executable scripts at Github which allows you to try out the examples and extend them in interesting ways. What You'll Learn Review the new features of TensorFlow 2.0 Use TensorFlow 2.0 to build machine learning and deep learning models Perform sequence predictions using TensorFlow 2.0 Deploy TensorFlow 2.0 models with practical examples Who This Book Is For Data scientists, machine and deep learning engineers.



Deep Learning With Tensorflow 2 And Keras


Deep Learning With Tensorflow 2 And Keras
DOWNLOAD
Author : Antonio Gulli
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-12-27

Deep Learning With Tensorflow 2 And Keras written by Antonio Gulli and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-27 with Computers categories.


Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.



Deep Learning Projects Using Tensorflow 2


Deep Learning Projects Using Tensorflow 2
DOWNLOAD
Author : Vinita Silaparasetty
language : en
Publisher: Apress
Release Date : 2020-08-08

Deep Learning Projects Using Tensorflow 2 written by Vinita Silaparasetty and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-08 with Computers categories.


Work through engaging and practical deep learning projects using TensorFlow 2.0. Using a hands-on approach, the projects in this book will lead new programmers through the basics into developing practical deep learning applications. Deep learning is quickly integrating itself into the technology landscape. Its applications range from applicable data science to deep fakes and so much more. It is crucial for aspiring data scientists or those who want to enter the field of AI to understand deep learning concepts. The best way to learn is by doing. You'll develop a working knowledge of not only TensorFlow, but also related technologies such as Python and Keras. You'll also work with Neural Networks and other deep learning concepts. By the end of the book, you'll have a collection of unique projects that you can add to your GitHub profiles and expand on for professional application. What You'll Learn Grasp the basic process of neural networks through projects, such as creating music Restore and colorize black and white images with deep learning processes Who This Book Is For Beginners new to TensorFlow and Python.



Hands On Computer Vision With Tensorflow 2


Hands On Computer Vision With Tensorflow 2
DOWNLOAD
Author : Benjamin Planche
language : en
Publisher:
Release Date : 2019

Hands On Computer Vision With Tensorflow 2 written by Benjamin Planche and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Application software categories.


Computer vision is achieving a new frontier of capabilities in fields like health, automobile or robotics. This book explores TensorFlow 2, Google's open-source AI framework, and teaches how to leverage deep neural networks for visual tasks. It will help you acquire the insight and skills to be a part of the exciting advances in computer vision.



Tensorflow 2 Reinforcement Learning Cookbook


Tensorflow 2 Reinforcement Learning Cookbook
DOWNLOAD
Author : Praveen Palanisamy
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-01-15

Tensorflow 2 Reinforcement Learning Cookbook written by Praveen Palanisamy and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-15 with Computers categories.


Discover recipes for developing AI applications to solve a variety of real-world business problems using reinforcement learning Key FeaturesDevelop and deploy deep reinforcement learning-based solutions to production pipelines, products, and servicesExplore popular reinforcement learning algorithms such as Q-learning, SARSA, and the actor-critic methodCustomize and build RL-based applications for performing real-world tasksBook Description With deep reinforcement learning, you can build intelligent agents, products, and services that can go beyond computer vision or perception to perform actions. TensorFlow 2.x is the latest major release of the most popular deep learning framework used to develop and train deep neural networks (DNNs). This book contains easy-to-follow recipes for leveraging TensorFlow 2.x to develop artificial intelligence applications. Starting with an introduction to the fundamentals of deep reinforcement learning and TensorFlow 2.x, the book covers OpenAI Gym, model-based RL, model-free RL, and how to develop basic agents. You'll discover how to implement advanced deep reinforcement learning algorithms such as actor-critic, deep deterministic policy gradients, deep-Q networks, proximal policy optimization, and deep recurrent Q-networks for training your RL agents. As you advance, you’ll explore the applications of reinforcement learning by building cryptocurrency trading agents, stock/share trading agents, and intelligent agents for automating task completion. Finally, you'll find out how to deploy deep reinforcement learning agents to the cloud and build cross-platform apps using TensorFlow 2.x. By the end of this TensorFlow book, you'll have gained a solid understanding of deep reinforcement learning algorithms and their implementations from scratch. What you will learnBuild deep reinforcement learning agents from scratch using the all-new TensorFlow 2.x and Keras APIImplement state-of-the-art deep reinforcement learning algorithms using minimal codeBuild, train, and package deep RL agents for cryptocurrency and stock tradingDeploy RL agents to the cloud and edge to test them by creating desktop, web, and mobile apps and cloud servicesSpeed up agent development using distributed DNN model trainingExplore distributed deep RL architectures and discover opportunities in AIaaS (AI as a Service)Who this book is for The book is for machine learning application developers, AI and applied AI researchers, data scientists, deep learning practitioners, and students with a basic understanding of reinforcement learning concepts who want to build, train, and deploy their own reinforcement learning systems from scratch using TensorFlow 2.x.



Pro Deep Learning With Tensorflow


Pro Deep Learning With Tensorflow
DOWNLOAD
Author : Santanu Pattanayak
language : en
Publisher: Apress
Release Date : 2017-12-06

Pro Deep Learning With Tensorflow written by Santanu Pattanayak and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-06 with Computers categories.


Deploy deep learning solutions in production with ease using TensorFlow. You'll also develop the mathematical understanding and intuition required to invent new deep learning architectures and solutions on your own. Pro Deep Learning with TensorFlow provides practical, hands-on expertise so you can learn deep learning from scratch and deploy meaningful deep learning solutions. This book will allow you to get up to speed quickly using TensorFlow and to optimize different deep learning architectures. All of the practical aspects of deep learning that are relevant in any industry are emphasized in this book. You will be able to use the prototypes demonstrated to build new deep learning applications. The code presented in the book is available in the form of iPython notebooks and scripts which allow you to try out examples and extend them in interesting ways. You will be equipped with the mathematical foundation and scientific knowledge to pursue research in this field and give back to the community. What You'll Learn Understand full stack deep learning using TensorFlow and gain a solid mathematical foundation for deep learning Deploy complex deep learning solutions in production using TensorFlow Carry out research on deep learning and perform experiments using TensorFlow Who This Book Is For Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts



Machine Learning For Economics And Finance In Tensorflow 2


Machine Learning For Economics And Finance In Tensorflow 2
DOWNLOAD
Author : Isaiah Hull
language : en
Publisher: Apress
Release Date : 2020-11-26

Machine Learning For Economics And Finance In Tensorflow 2 written by Isaiah Hull and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-26 with Computers categories.


Work on economic problems and solutions with tools from machine learning. ML has taken time to move into the space of academic economics. This is because empirical work in economics is concentrated on the identification of causal relationships in parsimonious statistical models; whereas machine learning is oriented towards prediction and is generally uninterested in either causality or parsimony. That leaves a gap for both students and professionals in the economics industry without a standard reference. This book focuses on economic problems with an empirical dimension, where machine learning methods may offer something of value. This includes coverage of a variety of discriminative deep learning models (DNNs, CNNs, RNNs, LSTMs, the Transformer Model, etc.), generative machine learning models, random forests, gradient boosting, clustering, and feature extraction. You'll also learn about the intersection of empirical methods in economics and machine learning, including regression analysis, text analysis, and dimensionality reduction methods, such as principal components analysis. TensorFlow offers a toolset that can be used to setup and solve any mathematical model, including those commonly used in economics. This book is structured to teach through a sequence of complete examples, each framed in terms of a specific economic problem of interest or topic. Otherwise complicated content is then distilled into accessible examples, so you can use TensorFlow to solve workhorse models in economics and finance. What You'll Learn Define, train, and evaluate machine learning models in TensorFlow 2 Apply fundamental concepts in machine learning, such as deep learning and natural language processing, to economic and financial problems Solve workhorse models in economics and finance Who This Book Is For Students and data scientists working in the economics industry. Academic economists and social scientists who have an interest in machine learning are also likely to find this book useful.



Machine Learning With Tensorflow Second Edition


Machine Learning With Tensorflow Second Edition
DOWNLOAD
Author : Mattmann A. Chris
language : en
Publisher: Manning
Release Date : 2021-02-02

Machine Learning With Tensorflow Second Edition written by Mattmann A. Chris and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-02 with Computers categories.


Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Summary Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Supercharge your data analysis with machine learning! ML algorithms automatically improve as they process data, so results get better over time. You don’t have to be a mathematician to use ML: Tools like Google’s TensorFlow library help with complex calculations so you can focus on getting the answers you need. About the book Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You’ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10. What's inside Machine Learning with TensorFlow Choosing the best ML approaches Visualizing algorithms with TensorBoard Sharing results with collaborators Running models in Docker About the reader Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x. About the author Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIG 1 A machine-learning odyssey 2 TensorFlow essentials PART 2 - CORE LEARNING ALGORITHMS 3 Linear regression and beyond 4 Using regression for call-center volume prediction 5 A gentle introduction to classification 6 Sentiment classification: Large movie-review dataset 7 Automatically clustering data 8 Inferring user activity from Android accelerometer data 9 Hidden Markov models 10 Part-of-speech tagging and word-sense disambiguation PART 3 - THE NEURAL NETWORK PARADIGM 11 A peek into autoencoders 12 Applying autoencoders: The CIFAR-10 image dataset 13 Reinforcement learning 14 Convolutional neural networks 15 Building a real-world CNN: VGG-Face ad VGG-Face Lite 16 Recurrent neural networks 17 LSTMs and automatic speech recognition 18 Sequence-to-sequence models for chatbots 19 Utility landscape



Generative Ai With Python And Tensorflow 2


Generative Ai With Python And Tensorflow 2
DOWNLOAD
Author : Joseph Babcock
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-04-30

Generative Ai With Python And Tensorflow 2 written by Joseph Babcock and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-30 with Computers categories.


This edition is heavily outdated and we have a new edition with PyTorch examples published! Key Features Code examples are in TensorFlow 2, which make it easy for PyTorch users to follow along Look inside the most famous deep generative models, from GPT to MuseGAN Learn to build and adapt your own models in TensorFlow 2.x Explore exciting, cutting-edge use cases for deep generative AI Book DescriptionMachines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI? In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks. There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation.What you will learn Export the code from GitHub into Google Colab to see how everything works for yourself Compose music using LSTM models, simple GANs, and MuseGAN Create deepfakes using facial landmarks, autoencoders, and pix2pix GAN Learn how attention and transformers have changed NLP Build several text generation pipelines based on LSTMs, BERT, and GPT-2 Implement paired and unpaired style transfer with networks like StyleGAN Discover emerging applications of generative AI like folding proteins and creating videos from images Who this book is for This is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.