Zero To Mastery The Complete Guide To Learning Sql Server And Data Science With Python Gui

DOWNLOAD
Download Zero To Mastery The Complete Guide To Learning Sql Server And Data Science With Python Gui PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Zero To Mastery The Complete Guide To Learning Sql Server And Data Science With Python Gui book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Zero To Mastery The Complete Guide To Learning Sql Server And Data Science With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-09-29
Zero To Mastery The Complete Guide To Learning Sql Server And Data Science With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-29 with Computers categories.
In this project, we provide you with a SQL SERVER version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years.
Three Projects Sql Server And Python Gui For Data Analysis
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-11-08
Three Projects Sql Server And Python Gui For Data Analysis written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-08 with Computers categories.
PROJECT 1: FULL SOURCE CODE: SQL SERVER FOR STUDENTS AND DATA SCIENTISTS WITH PYTHON GUI In this project, we provide you with the SQL SERVER version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years. PROJECT 2: FULL SOURCE CODE: SQL SERVER FOR DATA ANALYTICS AND VISUALIZATION WITH PYTHON GUI This book uses SQL SERVER version of MySQL-based Sakila sample database. It is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, customer, rental, payment and inventory among others. The Sakila sample database is intended to provide a standard schema that can be used for examples in books, tutorials, articles, samples, and so forth. Detailed information about the database can be found on website: https://dev.mysql.com/doc/index-other.html. In this project, you will develop GUI using PyQt5 to: read SQL SERVER database and every table in it; read every actor in actor table, read every film in films table; plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue customers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQL SERVER AND DATA SCIENCE WITH PYTHON GUI In this project, we provide you with a SQL SERVER version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years.
Data Science With Mysql Sqlite Postgresql And Sql Server Using Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-10-03
Data Science With Mysql Sqlite Postgresql And Sql Server Using Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-03 with Computers categories.
Book 1: MYSQL AND DATA SCIENCE: QUERIES AND VISUALIZATION WITH PYTHON GUI In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. This project uses the Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the MySQL from https://dev.mysql.com/doc/sakila/en/. Book 2: SQLITE FOR DATA ANALYST AND DATA SCIENTIST WITH PYTHON GUI In this project, we will use the SQLite version of BikeStores database as a sample database to help you work with MySQL quickly and effectively. The stores table includes the store’s information. Each store has a store name, contact information such as phone and email, and an address including street, city, state, and zip code. The staffs table stores the essential information of staffs including first name, last name. It also contains the communication information such as email and phone. A staff works at a store specified by the value in the store_id column. A store can have one or more staffs. A staff reports to a store manager specified by the value in the manager_id column. If the value in the manager_id is null, then the staff is the top manager. If a staff no longer works for any stores, the value in the active column is set to zero. The categories table stores the bike’s categories such as children bicycles, comfort bicycles, and electric bikes. The products table stores the product’s information such as name, brand, category, model year, and list price. Each product belongs to a brand specified by the brand_id column. Hence, a brand may have zero or many products. Each product also belongs a category specified by the category_id column. Also, each category may have zero or many products. The customers table stores customer’s information including first name, last name, phone, email, street, city, state, zip code, and photo path. The orders table stores the sales order’s header information including customer, order status, order date, required date, shipped date. It also stores the information on where the sales transaction was created (store) and who created it (staff). Each sales order has a row in the sales_orders table. A sales order has one or many line items stored in the order_items table. The order_items table stores the line items of a sales order. Each line item belongs to a sales order specified by the order_id column. A sales order line item includes product, order quantity, list price, and discount. The stocks table stores the inventory information i.e. the quantity of a particular product in a specific store. Book 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING POSTGRESQL WITH PYTHON GUI This book uses the PostgreSQL version of MySQL-based Northwind database. The Northwind database is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind database has since been ported to a variety of non-Microsoft databases, including PostgreSQL. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; and Orders and Order_Details: Sales Order transactions taking place between the customers & the company. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature. Book 4: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQL SERVER AND DATA SCIENCE WITH PYTHON GUI In this project, we provide you with a SQL SERVER version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years.
Full Source Code The Complete Guide To Learning Postgresql And Data Science With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2022-09-01
Full Source Code The Complete Guide To Learning Postgresql And Data Science With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-01 with Computers categories.
In this project, we provide you with the PostgreSQL version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years.
Hands On Guide On Data Science And Machine Learning With Python Gui
DOWNLOAD
Author : Vivian Siahaan
language : en
Publisher: BALIGE PUBLISHING
Release Date : 2021-07-08
Hands On Guide On Data Science And Machine Learning With Python Gui written by Vivian Siahaan and has been published by BALIGE PUBLISHING this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-08 with Computers categories.
In this book, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle (https://www.kaggle.com/fedesoriano/traffic-prediction-dataset/download). This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle (https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset/download). In Chapter 3, you will learn how to use Scikit-Learn, SVM, NumPy, Pandas, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle (https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset/download). This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor.
Introducing Microsoft Sql Server 2019
DOWNLOAD
Author : Kellyn Gorman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-04-27
Introducing Microsoft Sql Server 2019 written by Kellyn Gorman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-27 with Computers categories.
Explore the impressive storage and analytic tools available with the in-cloud and on-premises versions of Microsoft SQL Server 2019. Key FeaturesGain insights into what’s new in SQL Server 2019Understand use cases and customer scenarios that can be implemented with SQL Server 2019Discover new cross-platform tools that simplify management and analysisBook Description Microsoft SQL Server comes equipped with industry-leading features and the best online transaction processing capabilities. If you are looking to work with data processing and management, getting up to speed with Microsoft Server 2019 is key. Introducing SQL Server 2019 takes you through the latest features in SQL Server 2019 and their importance. You will learn to unlock faster querying speeds and understand how to leverage the new and improved security features to build robust data management solutions. Further chapters will assist you with integrating, managing, and analyzing all data, including relational, NoSQL, and unstructured big data using SQL Server 2019. Dedicated sections in the book will also demonstrate how you can use SQL Server 2019 to leverage data processing platforms, such as Apache Hadoop and Spark, and containerization technologies like Docker and Kubernetes to control your data and efficiently monitor it. By the end of this book, you'll be well versed with all the features of Microsoft SQL Server 2019 and understand how to use them confidently to build robust data management solutions. What you will learnBuild a custom container image with a DockerfileDeploy and run the SQL Server 2019 container imageUnderstand how to use SQL server on LinuxMigrate existing paginated reports to Power BI Report ServerLearn to query Hadoop Distributed File System (HDFS) data using Azure Data StudioUnderstand the benefits of In-Memory OLTPWho this book is for This book is for database administrators, architects, big data engineers, or anyone who has experience with SQL Server and wants to explore and implement the new features in SQL Server 2019. Basic working knowledge of SQL Server and relational database management system (RDBMS) is required.
Oracle Sql Plus
DOWNLOAD
Author : Jonathan Gennick
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 1999
Oracle Sql Plus written by Jonathan Gennick and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with Computers categories.
This book is the definitive guide to SQL*Plus. If you want to take best advantage of the power and flexibility of this popular Oracle tool, you need this book. SQLPlus is an interactive query tool that is ubiquitous in the Oracle world. It is present in every Oracle installation and is available to almost every Oracle developer and database administrator. SQLPlus has been shipped with Oracle since at least version 6. It continues to be supported and enhanced with each new version of Oracle, including Oracle8 and Oracle8i. It is still the only widely available tool for writing SQL scripts. Despite this wide availability and usage, few developers and DBAs know how powerful SQL*Plus really is. This book introduces SQLPlus, includes a quick reference to all of its syntax options, and, most important, provides chapters that describe, in step-by-step fashion, how to perform all of the tasks that Oracle developers and DBAs want to perform with SQLPlus -- and maybe some they didn't realize they COULD perform with SQLPlus. You will learn how to write and execute script files, generate ad hoc reports, extract data from the database, query the data dictionary tables, customize your SQLPlus environment, and use the SQL*Plus administrative features (new in Oracle8i). This book is an indispensable resource for readers who are new to SQL*Plus, a task-oriented learning tool for those who are already using it, and a quick reference for every user. A table of contents follows: Preface Introduction to SQLPlus Interacting with SQLPlus Generating Reports with SQLPlus Writing SQLPlus Scripts Extracting Data with SQLPlus Exploring Your Database with SQLPlus Advanced Scripting Tuning and Timing The Product User Profile Administration with SQLPlus Customizing Your SQLPlus Environment Appendices A. SQLPlus Command Reference B. Connect Strings and the SQLPlus Command
Sql For Data Scientists
DOWNLOAD
Author : Renee M. P. Teate
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-17
Sql For Data Scientists written by Renee M. P. Teate and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-17 with Computers categories.
Jump-start your career as a data scientist—learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that’s dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn’t cover SQL broadly. Instead, you’ll learn the subset of SQL skills that data analysts and data scientists use frequently. You’ll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner’s perspective, moving your data scientist career forward!
Hands On Data Science And Python Machine Learning
DOWNLOAD
Author : Frank Kane
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-31
Hands On Data Science And Python Machine Learning written by Frank Kane and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-31 with Computers categories.
This book covers the fundamentals of machine learning with Python in a concise and dynamic manner. It covers data mining and large-scale machine learning using Apache Spark. About This Book Take your first steps in the world of data science by understanding the tools and techniques of data analysis Train efficient Machine Learning models in Python using the supervised and unsupervised learning methods Learn how to use Apache Spark for processing Big Data efficiently Who This Book Is For If you are a budding data scientist or a data analyst who wants to analyze and gain actionable insights from data using Python, this book is for you. Programmers with some experience in Python who want to enter the lucrative world of Data Science will also find this book to be very useful, but you don't need to be an expert Python coder or mathematician to get the most from this book. What You Will Learn Learn how to clean your data and ready it for analysis Implement the popular clustering and regression methods in Python Train efficient machine learning models using decision trees and random forests Visualize the results of your analysis using Python's Matplotlib library Use Apache Spark's MLlib package to perform machine learning on large datasets In Detail Join Frank Kane, who worked on Amazon and IMDb's machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank's successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis. Style and approach This comprehensive book is a perfect blend of theory and hands-on code examples in Python which can be used for your reference at any time.
Dive Into Python
DOWNLOAD
Author : Mark Pilgrim
language : en
Publisher: Apress
Release Date : 2013-11-09
Dive Into Python written by Mark Pilgrim and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-09 with Computers categories.
Whether you're an experienced programmer looking to get into Python or grizzled Python veteran who remembers the days when you had to import the string module, Dive Into Python is your 'desert island' Python book. — Joey deVilla, Slashdot contributor As a complete newbie to the language...I constantly had those little thoughts like, 'this is the way a programming language should be taught.' — Lasse Koskela , JavaRanch Apress has been profuse in both its quantity and quality of releasesand (this book is) surely worth adding to your technical reading budget for skills development. — Blane Warrene, Technology Notes I am reading this ... because the language seems like a good way to accomplish programming tasks that don't require the low-level bit handling power of C. — Richard Bejtlich, TaoSecurity Python is a new and innovative scripting language. It is set to replace Perl as the programming language of choice for shell scripters, and for serious application developers who want a feature-rich, yet simple language to deploy their products. Dive Into Python is ahands-on guide to the Python language. Each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end. This is the perfect resource for you if you like to jump into languages fast and get going right away. If you're just starting to learn Python, first pick up a copy of Magnus Lie Hetland's Practical Python.