[PDF] A Comparison Of The Bayesian And Frequentist Approaches To Estimation - eBooks Review

A Comparison Of The Bayesian And Frequentist Approaches To Estimation


A Comparison Of The Bayesian And Frequentist Approaches To Estimation
DOWNLOAD

Download A Comparison Of The Bayesian And Frequentist Approaches To Estimation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Comparison Of The Bayesian And Frequentist Approaches To Estimation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



A Comparison Of The Bayesian And Frequentist Approaches To Estimation


A Comparison Of The Bayesian And Frequentist Approaches To Estimation
DOWNLOAD
Author : Francisco J. Samaniego
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-14

A Comparison Of The Bayesian And Frequentist Approaches To Estimation written by Francisco J. Samaniego and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-14 with Mathematics categories.


The main theme of this monograph is “comparative statistical inference. ” While the topics covered have been carefully selected (they are, for example, restricted to pr- lems of statistical estimation), my aim is to provide ideas and examples which will assist a statistician, or a statistical practitioner, in comparing the performance one can expect from using either Bayesian or classical (aka, frequentist) solutions in - timation problems. Before investing the hours it will take to read this monograph, one might well want to know what sets it apart from other treatises on comparative inference. The two books that are closest to the present work are the well-known tomes by Barnett (1999) and Cox (2006). These books do indeed consider the c- ceptual and methodological differences between Bayesian and frequentist methods. What is largely absent from them, however, are answers to the question: “which - proach should one use in a given problem?” It is this latter issue that this monograph is intended to investigate. There are many books on Bayesian inference, including, for example, the widely used texts by Carlin and Louis (2008) and Gelman, Carlin, Stern and Rubin (2004). These books differ from the present work in that they begin with the premise that a Bayesian treatment is called for and then provide guidance on how a Bayesian an- ysis should be executed. Similarly, there are many books written from a classical perspective.



Ecological Inference


Ecological Inference
DOWNLOAD
Author : Gary King
language : en
Publisher: Cambridge University Press
Release Date : 2004-09-13

Ecological Inference written by Gary King and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-13 with Nature categories.


Drawing upon the recent explosion of research in the field, a diverse group of scholars surveys the latest strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays offers many fresh and important contributions to the study of ecological inference.



Bayesian Inference And Maximum Entropy Methods In Science And Engineering


Bayesian Inference And Maximum Entropy Methods In Science And Engineering
DOWNLOAD
Author : Adriano Polpo
language : en
Publisher: Springer
Release Date : 2018-07-12

Bayesian Inference And Maximum Entropy Methods In Science And Engineering written by Adriano Polpo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-12 with Mathematics categories.


These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.



In All Likelihood


In All Likelihood
DOWNLOAD
Author : Yudi Pawitan
language : en
Publisher: Oxford University Press, USA
Release Date : 2013-01-17

In All Likelihood written by Yudi Pawitan and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-17 with Business & Economics categories.


This book introduces likelihood as a unifying concept in statistical modelling and inference. The complete range of concepts and applications are covered, from very simple to very complex studies. It relies on realistic examples, and presents the main results using heuristic rather than formal mathematical arguments.



A First Course In Bayesian Statistical Methods


A First Course In Bayesian Statistical Methods
DOWNLOAD
Author : Peter D. Hoff
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-06-02

A First Course In Bayesian Statistical Methods written by Peter D. Hoff and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-02 with Mathematics categories.


A self-contained introduction to probability, exchangeability and Bayes’ rule provides a theoretical understanding of the applied material. Numerous examples with R-code that can be run "as-is" allow the reader to perform the data analyses themselves. The development of Monte Carlo and Markov chain Monte Carlo methods in the context of data analysis examples provides motivation for these computational methods.



Bayesian Philosophy Of Science


Bayesian Philosophy Of Science
DOWNLOAD
Author : Jan Sprenger
language : en
Publisher: Oxford University Press
Release Date : 2019-08-23

Bayesian Philosophy Of Science written by Jan Sprenger and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-23 with Philosophy categories.


How should we reason in science? Jan Sprenger and Stephan Hartmann offer a refreshing take on classical topics in philosophy of science, using a single key concept to explain and to elucidate manifold aspects of scientific reasoning. They present good arguments and good inferences as being characterized by their effect on our rational degrees of belief. Refuting the view that there is no place for subjective attitudes in 'objective science', Sprenger and Hartmann explain the value of convincing evidence in terms of a cycle of variations on the theme of representing rational degrees of belief by means of subjective probabilities (and changing them by Bayesian conditionalization). In doing so, they integrate Bayesian inference--the leading theory of rationality in social science--with the practice of 21st century science. Bayesian Philosophy of Science thereby shows how modeling such attitudes improves our understanding of causes, explanations, confirming evidence, and scientific models in general. It combines a scientifically minded and mathematically sophisticated approach with conceptual analysis and attention to methodological problems of modern science, especially in statistical inference, and is therefore a valuable resource for philosophers and scientific practitioners.



Bayesian Data Analysis Third Edition


Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01

Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.


Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.



Small Sample Size Solutions


Small Sample Size Solutions
DOWNLOAD
Author : Rens van de Schoot
language : en
Publisher: Routledge
Release Date : 2020-02-13

Small Sample Size Solutions written by Rens van de Schoot and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-13 with Psychology categories.


Researchers often have difficulties collecting enough data to test their hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs. Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the research question. This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample research. Each chapter illustrates statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small. This essential book will enable social and behavioral science researchers to test their hypotheses even when the statistical model required for answering their research question is too complex for the sample sizes they can collect. The statistical models in the book range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R. The methods described in this book will be useful for researchers across the social and behavioral sciences, ranging from medical sciences and epidemiology to psychology, marketing, and economics.



Statistical Roundtables


Statistical Roundtables
DOWNLOAD
Author : Christine M. Anderson-Cook
language : en
Publisher: Quality Press
Release Date : 2016-04-22

Statistical Roundtables written by Christine M. Anderson-Cook and has been published by Quality Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-22 with Business & Economics categories.


Quality Progress, the flagship journal of ASQ, has been publishing the column “Statistics Roundtable” since 1999. With over 130 contributions from leading authors in applied statistics, the column has been highly successful and widely read. This book collects 90 of the most interesting and useful articles on some key topics. The editors have constructed this book to be a resource for statisticians and practitioners alike – with short, accessible, practical advice in important core areas of statistics from world-renowned experts. This book is intended to be an informative read, with bite-sized columns, as well as a starting point for deeper exploration of key statistical areas. The book contains nine chapters with collections of articles on the following topics: Statistical engineering Data quality and measurement Data collection Key statistical tools Quality control Reliability Multiple response and meta-analysis Applications Communication and training Chapter introductions provide a quick overview of the material contained in the columns of that chapter, as well as complementary articles for that topic that appear elsewhere in the book. Also included at the end of the each chapter introduction is a short list of key references that can provide additional details or examples for material in the topic area.



Bayesian Statistics For Beginners


Bayesian Statistics For Beginners
DOWNLOAD
Author : Therese M. Donovan
language : en
Publisher:
Release Date : 2019

Bayesian Statistics For Beginners written by Therese M. Donovan and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Mathematics categories.


Bayesian statistics is currently undergoing something of a renaissance. At its heart is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. It is an approach that is ideally suited to making initial assessments based on incomplete or imperfect information; as that information is gathered and disseminated, the Bayesian approach corrects or replaces the assumptions and alters its decision-making accordingly to generate a new set of probabilities. As new data/evidence becomes available the probability for a particular hypothesis can therefore be steadily refined and revised. It is very well-suited to the scientific method in general and is widely used across the social, biological, medical, and physical sciences. Key to this book's novel and informal perspective is its unique pedagogy, a question and answer approach that utilizes accessible language, humor, plentiful illustrations, and frequent reference to on-line resources. Bayesian Statistics for Beginners is an introductory textbook suitable for senior undergraduate and graduate students, professional researchers, and practitioners seeking to improve their understanding of the Bayesian statistical techniques they routinely use for data analysis in the life and medical sciences, psychology, public health, business, and other fields.