A Concise Introduction To Numerical Analysis

DOWNLOAD
Download A Concise Introduction To Numerical Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Concise Introduction To Numerical Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Concise Introduction To Numerical Analysis
DOWNLOAD
Author : A. C. Faul
language : en
Publisher: CRC Press
Release Date : 2018-10-24
A Concise Introduction To Numerical Analysis written by A. C. Faul and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-24 with Mathematics categories.
This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics. Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading. The book uses MATLAB® implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book’s page at www.crcpress.com. Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book’s page at www.crcpress.com. This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.
A Concise Introduction To Machine Learning
DOWNLOAD
Author : A.C. Faul
language : en
Publisher: CRC Press
Release Date : 2019-08-01
A Concise Introduction To Machine Learning written by A.C. Faul and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-01 with Business & Economics categories.
The emphasis of the book is on the question of Why – only if why an algorithm is successful is understood, can it be properly applied, and the results trusted. Algorithms are often taught side by side without showing the similarities and differences between them. This book addresses the commonalities, and aims to give a thorough and in-depth treatment and develop intuition, while remaining concise. This useful reference should be an essential on the bookshelves of anyone employing machine learning techniques.
Introduction To Numerical Analysis
DOWNLOAD
Author : Francis Begnaud Hildebrand
language : en
Publisher: Courier Corporation
Release Date : 1987-01-01
Introduction To Numerical Analysis written by Francis Begnaud Hildebrand and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987-01-01 with Mathematics categories.
The ultimate aim of the field of numerical analysis is to provide convenient methods for obtaining useful solutions to mathematical problems and for extracting useful information from available solutions which are not expressed in tractable forms. This well-known, highly respected volume provides an introduction to the fundamental processes of numerical analysis, including substantial grounding in the basic operations of computation, approximation, interpolation, numerical differentiation and integration, and the numerical solution of equations, as well as in applications to such processes as the smoothing of data, the numerical summation of series, and the numerical solution of ordinary differential equations. Chapter headings include: l. Introduction 2. Interpolation with Divided Differences 3. Lagrangian Methods 4. Finite-Difference Interpolation 5. Operations with Finite Differences 6. Numerical Solution of Differential Equations 7. Least-Squares Polynomial Approximation In this revised and updated second edition, Professor Hildebrand (Emeritus, Mathematics, MIT) made a special effort to include more recent significant developments in the field, increasing the focus on concepts and procedures associated with computers. This new material includes discussions of machine errors and recursive calculation, increased emphasis on the midpoint rule and the consideration of Romberg integration and the classical Filon integration; a modified treatment of prediction-correction methods and the addition of Hamming's method, and numerous other important topics. In addition, reference lists have been expanded and updated, and more than 150 new problems have been added. Widely considered the classic book in the field, Hildebrand's Introduction to Numerical Analysis is aimed at advanced undergraduate and graduate students, or the general reader in search of a strong, clear introduction to the theory and analysis of numbers.
Concise Guide To Numerical Algorithmics
DOWNLOAD
Author : John Lawrence Nazareth
language : en
Publisher: Springer Nature
Release Date : 2023-01-02
Concise Guide To Numerical Algorithmics written by John Lawrence Nazareth and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-02 with Computers categories.
Numerical Algorithmic Science and Engineering (NAS&E), or more compactly, Numerical Algorithmics, is the theoretical and empirical study and the practical implementation and application of algorithms for solving finite-dimensional problems of a numeric nature. The variables of such problems are either discrete-valued, or continuous over the reals, or, and as is often the case, a combination of the two, and they may or may not have an underlying network/graph structure. This re-emerging discipline of numerical algorithmics within computer science is the counterpart of the now well-established discipline of numerical analysis within mathematics, where the latter’s emphasis is on infinite-dimensional, continuous numerical problems and their finite-dimensional, continuous approximates. A discussion of the underlying rationale for numerical algorithmics, its foundational models of computation, its organizational details, and its role, in conjunction with numerical analysis, in support of the modern modus operandi of scientific computing, or computational science & engineering, is the primary focus of this short monograph. It comprises six chapters, each with its own bibliography. Chapters 2, 3 and 6 present the book’s primary content. Chapters 1, 4, and 5 are briefer, and they provide contextual material for the three primary chapters and smooth the transition between them. Mathematical formalism has been kept to a minimum, and, whenever possible, visual and verbal forms of presentation are employed and the discussion enlivened through the use of motivating quotations and illustrative examples. The reader is expected to have a working knowledge of the basics of computer science, an exposure to basic linear algebra and calculus (and perhaps some real analysis), and an understanding of elementary mathematical concepts such as convexity of sets and functions, networks and graphs, and so on. Although this book is not suitable for use as the principal textbook for a course on numerical algorithmics (NAS&E), it will be of value as a supplementary reference for a variety of courses. It can also serve as the primary text for a research seminar. And it can be recommended for self-study of the foundations and organization of NAS&E to graduate and advanced undergraduate students with sufficient mathematical maturity and a background in computing. When departments of computer science were first created within universities worldwide during the middle of the twentieth century, numerical analysis was an important part of the curriculum. Its role within the discipline of computer science has greatly diminished over time, if not vanished altogether, and specialists in that area are now to be found mainly within other fields, in particular, mathematics and the physical sciences. A central concern of this monograph is the regrettable, downward trajectory of numerical analysis within computer science and how it can be arrested and suitably reconstituted. Resorting to a biblical metaphor, numerical algorithmics (NAS&E) as envisioned herein is neither old wine in new bottles, nor new wine in old bottles, but rather this re-emerging discipline is a decantation of an age-old vintage that can hopefully find its proper place within the larger arena of computer science, and at what appears now to be an opportune time.
Introduction To Numerical Computation An Second Edition
DOWNLOAD
Author : Wen Shen
language : en
Publisher: World Scientific
Release Date : 2019-08-28
Introduction To Numerical Computation An Second Edition written by Wen Shen and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-28 with Mathematics categories.
This book serves as a set of lecture notes for a senior undergraduate level course on the introduction to numerical computation, which was developed through 4 semesters of teaching the course over 10 years. The book requires minimum background knowledge from the students, including only a three-semester of calculus, and a bit on matrices.The book covers many of the introductory topics for a first course in numerical computation, which fits in the short time frame of a semester course. Topics range from polynomial approximations and interpolation, to numerical methods for ODEs and PDEs. Emphasis was made more on algorithm development, basic mathematical ideas behind the algorithms, and the implementation in Matlab.The book is supplemented by two sets of videos, available through the author's YouTube channel. Homework problem sets are provided for each chapter, and complete answer sets are available for instructors upon request.The second edition contains a set of selected advanced topics, written in a self-contained manner, suitable for self-learning or as additional material for an honored version of the course. Videos are also available for these added topics.
Numerical Solution Of Ordinary Differential Equations
DOWNLOAD
Author : Kendall Atkinson
language : en
Publisher: John Wiley & Sons
Release Date : 2009-02-09
Numerical Solution Of Ordinary Differential Equations written by Kendall Atkinson and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-09 with Mathematics categories.
A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.
A Concise Introduction To Geometric Numerical Integration
DOWNLOAD
Author : Sergio Blanes
language : en
Publisher: CRC Press
Release Date : 2017-11-22
A Concise Introduction To Geometric Numerical Integration written by Sergio Blanes and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Mathematics categories.
Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.
Numerical Methods For Scientists And Engineers
DOWNLOAD
Author : Zekeriya Altaç
language : en
Publisher: CRC Press
Release Date : 2024-10-15
Numerical Methods For Scientists And Engineers written by Zekeriya Altaç and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-15 with Mathematics categories.
Numerical Methods for Scientists and Engineers: With Pseudocodes is designed as a primary textbook for a one-semester course on Numerical Methods for sophomore or junior-level students. It covers the fundamental numerical methods required for scientists and engineers, as well as some advanced topics which are left to the discretion of instructors. The objective of the text is to provide readers with a strong theoretical background on numerical methods encountered in science and engineering, and to explain how to apply these methods to practical, real-world problems. Readers will also learn how to convert numerical algorithms into running computer codes. Features: Numerous pedagogic features including exercises, “pros and cons” boxes for each method discussed, and rigorous highlighting of key topics and ideas Suitable as a primary text for undergraduate courses in numerical methods, but also as a reference to working engineers A Pseudocode approach that makes the book accessible to those with different (or no) coding backgrounds, which does not tie instructors to one particular language over another A dedicated website featuring additional code examples, quizzes, exercises, discussions, and more: https://github.com/zaltac/NumMethodsWPseudoCodes A complete Solution Manual and PowerPoint Presentations are available (free of charge) to instructors at www.routledge.com/9781032754741
Numerical Analysis Of Partial Differential Equations
DOWNLOAD
Author : S. H, Lui
language : en
Publisher: John Wiley & Sons
Release Date : 2012-01-10
Numerical Analysis Of Partial Differential Equations written by S. H, Lui and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-10 with Mathematics categories.
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.
A Course On Integral Equations With Numerical Analysis
DOWNLOAD
Author : Tofigh Allahviranloo
language : en
Publisher: Springer Nature
Release Date : 2021-10-30
A Course On Integral Equations With Numerical Analysis written by Tofigh Allahviranloo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-30 with Technology & Engineering categories.
This book suggests that the numerical analysis subjects’ matter are the important tools of the book topic, because numerical errors and methods have important roles in solving integral equations. Therefore, all needed topics including a brief description of interpolation are explained in the book. The integral equations have many applications in the engineering, medical, and economic sciences, so the present book contains new and useful materials about interval computations including interval interpolations that are going to be used in interval integral equations. The concepts of integral equations are going to be discussed in two directions, analytical concepts, and numerical solutions which both are necessary for these kinds of dynamic systems. The differences between this book with the others are a full discussion of error topics and also using interval interpolations concepts to obtain interval integral equations. All researchers and students in the field of mathematical, computer, and also engineering sciences can benefit the subjects of the book.