A New Approach To Sobolev Spaces In Metric Measure Spaces

DOWNLOAD
Download A New Approach To Sobolev Spaces In Metric Measure Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A New Approach To Sobolev Spaces In Metric Measure Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A New Approach To Sobolev Spaces In Metric Measure Spaces
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2016
A New Approach To Sobolev Spaces In Metric Measure Spaces written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.
Sobolev Spaces On Metric Measure Spaces
DOWNLOAD
Author : Juha Heinonen
language : en
Publisher: Cambridge University Press
Release Date : 2015-02-05
Sobolev Spaces On Metric Measure Spaces written by Juha Heinonen and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-05 with Mathematics categories.
Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities.
Sobolev Spaces On Metric Measure Spaces
DOWNLOAD
Author : Juha Heinonen
language : en
Publisher: Cambridge University Press
Release Date : 2015-02-05
Sobolev Spaces On Metric Measure Spaces written by Juha Heinonen and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-05 with Mathematics categories.
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Lectures On Analysis On Metric Spaces
DOWNLOAD
Author : Juha Heinonen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Lectures On Analysis On Metric Spaces written by Juha Heinonen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Analysis in spaces with no a priori smooth structure has progressed to include concepts from the first order calculus. In particular, there have been important advances in understanding the infinitesimal versus global behavior of Lipschitz functions and quasiconformal mappings in rather general settings; abstract Sobolev space theories have been instrumental in this development. The purpose of this book is to communicate some of the recent work in the area while preparing the reader to study more substantial, related articles. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is relatively recent and appears for the first time in book format. There are plenty of exercises. The book is well suited for self-study, or as a text in a graduate course or seminar. The material is relevant to anyone who is interested in analysis and geometry in nonsmooth settings.
New Trends On Analysis And Geometry In Metric Spaces
DOWNLOAD
Author : Fabrice Baudoin
language : en
Publisher: Springer Nature
Release Date : 2022-02-04
New Trends On Analysis And Geometry In Metric Spaces written by Fabrice Baudoin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-04 with Mathematics categories.
This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.
Analysis And Geometry Of Metric Measure Spaces
DOWNLOAD
Author : Galia Devora Dafni
language : en
Publisher: American Mathematical Soc.
Release Date : 2013
Analysis And Geometry Of Metric Measure Spaces written by Galia Devora Dafni and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.
Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.
Maximal Function Methods For Sobolev Spaces
DOWNLOAD
Author : Juha Kinnunen
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-08-02
Maximal Function Methods For Sobolev Spaces written by Juha Kinnunen and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-02 with Education categories.
This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.
Sobolev Spaces
DOWNLOAD
Author : Vladimir Maz'ya
language : en
Publisher: Springer
Release Date : 2013-12-21
Sobolev Spaces written by Vladimir Maz'ya and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-21 with Mathematics categories.
The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q
Sobolev Spaces In Mathematics I
DOWNLOAD
Author : Vladimir Maz'ya
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-02
Sobolev Spaces In Mathematics I written by Vladimir Maz'ya and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-02 with Mathematics categories.
This volume mark’s the centenary of the birth of the outstanding mathematician of the 20th century, Sergey Sobolev. It includes new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Functional Analysis Sobolev Spaces And Partial Differential Equations
DOWNLOAD
Author : Haim Brezis
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-10
Functional Analysis Sobolev Spaces And Partial Differential Equations written by Haim Brezis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-10 with Mathematics categories.
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.