Sobolev Spaces

DOWNLOAD
Download Sobolev Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sobolev Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A First Course In Sobolev Spaces
DOWNLOAD
Author : Giovanni Leoni
language : en
Publisher: American Mathematical Society
Release Date : 2024-04-17
A First Course In Sobolev Spaces written by Giovanni Leoni and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-04-17 with Mathematics categories.
This book is about differentiation of functions. It is divided into two parts, which can be used as different textbooks, one for an advanced undergraduate course in functions of one variable and one for a graduate course on Sobolev functions. The first part develops the theory of monotone, absolutely continuous, and bounded variation functions of one variable and their relationship with Lebesgue–Stieltjes measures and Sobolev functions. It also studies decreasing rearrangement and curves. The second edition includes a chapter on functions mapping time into Banach spaces. The second part of the book studies functions of several variables. It begins with an overview of classical results such as Rademacher's and Stepanoff's differentiability theorems, Whitney's extension theorem, Brouwer's fixed point theorem, and the divergence theorem for Lipschitz domains. It then moves to distributions, Fourier transforms and tempered distributions. The remaining chapters are a treatise on Sobolev functions. The second edition focuses more on higher order derivatives and it includes the interpolation theorems of Gagliardo and Nirenberg. It studies embedding theorems, extension domains, chain rule, superposition, Poincaré's inequalities and traces. A major change compared to the first edition is the chapter on Besov spaces, which are now treated using interpolation theory.
An Introduction To Sobolev Spaces
DOWNLOAD
Author : Erhan Pişkin
language : en
Publisher: Bentham Science Publishers
Release Date : 2021-11-10
An Introduction To Sobolev Spaces written by Erhan Pişkin and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-10 with Mathematics categories.
Sobolev spaces were firstly defined by the Russian mathematician, Sergei L. Sobolev (1908-1989) in the 1930s. Several properties of these spaces have been studied by mathematicians until today. Functions that account for existence and uniqueness, asymptotic behavior, blow up, stability and instability of the solution of many differential equations that occur in applied and in engineering sciences are carried out with the help of Sobolev spaces and embedding theorems in these spaces. An Introduction to Sobolev Spaces provides a brief introduction to Sobolev spaces at a simple level with illustrated examples. Readers will learn about the properties of these types of vector spaces and gain an understanding of advanced differential calculus and partial difference equations that are related to this topic. The contents of the book are suitable for undergraduate and graduate students, mathematicians, and engineers who have an interest in getting a quick, but carefully presented, mathematically sound, basic knowledge about Sobolev Spaces.
Sobolev Spaces
DOWNLOAD
Author : Vladimir Maz'ya
language : en
Publisher: Springer
Release Date : 2013-12-21
Sobolev Spaces written by Vladimir Maz'ya and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-21 with Mathematics categories.
The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q
Sobolev Spaces
DOWNLOAD
Author : Vladimir Maz'ya
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-02-11
Sobolev Spaces written by Vladimir Maz'ya and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-11 with Mathematics categories.
Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
Sobolev Spaces Their Generalizations And Elliptic Problems In Smooth And Lipschitz Domains
DOWNLOAD
Author : Mikhail S. Agranovich
language : en
Publisher: Springer
Release Date : 2015-05-06
Sobolev Spaces Their Generalizations And Elliptic Problems In Smooth And Lipschitz Domains written by Mikhail S. Agranovich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-06 with Mathematics categories.
This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.
Sobolev Spaces
DOWNLOAD
Author : Robert A. Adams
language : en
Publisher: Elsevier
Release Date : 2003-06-26
Sobolev Spaces written by Robert A. Adams and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-26 with Mathematics categories.
Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences. This second edition of Adam's 'classic' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike. - Self-contained and accessible for readers in other disciplines - Written at elementary level making it accessible to graduate students
An Introduction To Sobolev Spaces And Interpolation Spaces
DOWNLOAD
Author : Luc Tartar
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-26
An Introduction To Sobolev Spaces And Interpolation Spaces written by Luc Tartar and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-26 with Mathematics categories.
After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.
Functional Analysis Sobolev Spaces And Partial Differential Equations
DOWNLOAD
Author : Haim Brezis
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-10
Functional Analysis Sobolev Spaces And Partial Differential Equations written by Haim Brezis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-10 with Mathematics categories.
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Nonlinear Potential Theory And Weighted Sobolev Spaces
DOWNLOAD
Author : Bengt O. Turesson
language : en
Publisher: Springer
Release Date : 2007-05-06
Nonlinear Potential Theory And Weighted Sobolev Spaces written by Bengt O. Turesson and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-06 with Mathematics categories.
The book systematically develops the nonlinear potential theory connected with the weighted Sobolev spaces, where the weight usually belongs to Muckenhoupt's class of Ap weights. These spaces occur as solutions spaces for degenerate elliptic partial differential equations. The Sobolev space theory covers results concerning approximation, extension, and interpolation, Sobolev and Poincaré inequalities, Maz'ya type embedding theorems, and isoperimetric inequalities. In the chapter devoted to potential theory, several weighted capacities are investigated. Moreover, "Kellogg lemmas" are established for various concepts of thinness. Applications of potential theory to weighted Sobolev spaces include quasi continuity of Sobolev functions, Poincaré inequalities, and spectral synthesis theorems.