A Practical Guide To Neural Nets

DOWNLOAD
Download A Practical Guide To Neural Nets PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get A Practical Guide To Neural Nets book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
A Practical Guide To Neural Nets
DOWNLOAD
Author : Marilyn McCord Nelson
language : en
Publisher: Addison Wesley Publishing Company
Release Date : 1994
A Practical Guide To Neural Nets written by Marilyn McCord Nelson and has been published by Addison Wesley Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994 with Computers categories.
Based on a course given to internal managers at Texas Instruments, this book is an introduction to neural nets for computer science, artificial intelligence and R & D professionals, as well as MIS or DP managers.
Applying Neural Networks
DOWNLOAD
Author : Kevin Swingler
language : en
Publisher: Morgan Kaufmann
Release Date : 1996
Applying Neural Networks written by Kevin Swingler and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Computers categories.
This book is designed to enable the reader to design and run a neural network-based project. It presents everything the reader will need to know to ensure the success of such a project. The book contains a free disk with C and C++ programs, which implement many of the techniques discussed in the book.
Neural Networks
DOWNLOAD
Author : Steven Cooper
language : en
Publisher: Data Science
Release Date : 2019-09
Neural Networks written by Steven Cooper and has been published by Data Science this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09 with categories.
If you're looking to become familiar with the basics of a neural network, then you have found a resource to help you accomplish that goal.
Neural Networks Tricks Of The Trade
DOWNLOAD
Author : Grégoire Montavon
language : en
Publisher: Springer
Release Date : 2012-11-14
Neural Networks Tricks Of The Trade written by Grégoire Montavon and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-14 with Computers categories.
The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.
Introduction To Deep Learning And Neural Networks With Pythont
DOWNLOAD
Author : Ahmed Fawzy Gad
language : en
Publisher: Academic Press
Release Date : 2020-11-26
Introduction To Deep Learning And Neural Networks With Pythont written by Ahmed Fawzy Gad and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-26 with Medical categories.
Introduction to Deep Learning and Neural Networks with PythonT: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and PythonT code examples to clarify neural network calculations, by book's end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and PythonT examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network.
A Practical Guide To Neural Nets
DOWNLOAD
Author : Marilyn McCord Nelson
language : en
Publisher: Prentice Hall
Release Date : 1991
A Practical Guide To Neural Nets written by Marilyn McCord Nelson and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991 with Computers categories.
Guide To Convolutional Neural Networks
DOWNLOAD
Author : Hamed Habibi Aghdam
language : en
Publisher: Springer
Release Date : 2017-05-17
Guide To Convolutional Neural Networks written by Hamed Habibi Aghdam and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-17 with Computers categories.
This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis. Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website. This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
An Introduction To Neural Networks
DOWNLOAD
Author : Kevin Gurney
language : en
Publisher: CRC Press
Release Date : 2018-10-08
An Introduction To Neural Networks written by Kevin Gurney and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-08 with Computers categories.
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.
Neural Networks And Deep Learning
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2018-08-25
Neural Networks And Deep Learning written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-25 with Computers categories.
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.