[PDF] Introduction To Deep Learning And Neural Networks With Pythont - eBooks Review

Introduction To Deep Learning And Neural Networks With Pythont


Introduction To Deep Learning And Neural Networks With Pythont
DOWNLOAD

Download Introduction To Deep Learning And Neural Networks With Pythont PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Introduction To Deep Learning And Neural Networks With Pythont book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Deep Learning And Neural Networks With Pythont


Introduction To Deep Learning And Neural Networks With Pythont
DOWNLOAD
Author : Ahmed Fawzy Gad
language : en
Publisher: Academic Press
Release Date : 2020-11-26

Introduction To Deep Learning And Neural Networks With Pythont written by Ahmed Fawzy Gad and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-26 with Medical categories.


Introduction to Deep Learning and Neural Networks with PythonT: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and PythonT code examples to clarify neural network calculations, by book's end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and PythonT examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network.



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Introduction To Deep Learning And Neural Networks With Pythontm


Introduction To Deep Learning And Neural Networks With Pythontm
DOWNLOAD
Author : Ahmed Fawzy Gad
language : en
Publisher: Academic Press
Release Date : 2020-11-25

Introduction To Deep Learning And Neural Networks With Pythontm written by Ahmed Fawzy Gad and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Medical categories.


Introduction to Deep Learning and Neural Networks with PythonTM: A Practical Guide is an intensive step-by-step guide for neuroscientists to fully understand, practice, and build neural networks. Providing math and PythonTM code examples to clarify neural network calculations, by book's end readers will fully understand how neural networks work starting from the simplest model Y=X and building from scratch. Details and explanations are provided on how a generic gradient descent algorithm works based on mathematical and PythonTM examples, teaching you how to use the gradient descent algorithm to manually perform all calculations in both the forward and backward passes of training a neural network. - Examines the practical side of deep learning and neural networks - Provides a problem-based approach to building artificial neural networks using real data - Describes PythonTM functions and features for neuroscientists - Uses a careful tutorial approach to describe implementation of neural networks in PythonTM - Features math and code examples (via companion website) with helpful instructions for easy implementation



Deep Learning With Python


Deep Learning With Python
DOWNLOAD
Author : Chao Pan
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2016-06-14

Deep Learning With Python written by Chao Pan and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-14 with categories.


***** BUY NOW (will soon return to 24.77 $) *****Are you thinking of learning deep Learning using Python? (For Beginners Only) If you are looking for a beginners guide to learn deep learning, in just a few hours, this book is for you. From AI Sciences Publisher Our books may be the best one for beginners; it's a step-by-step guide for any person who wants to start learning Artificial Intelligence and Data Science from scratch. It will help you in preparing a solid foundation and learn any other high-level courses.To get the most out of the concepts that would be covered, readers are advised to adopt a hands on approach, which would lead to better mental representations.Step-by-Step Guide and Visual Illustrations and ExamplesThis book and the accompanying examples, you would be well suited to tackle problems, which pique your interests using machine learning and deep learning models. Book Objectives This book will help you: Have an appreciation for deep learning and an understanding of their fundamental principles. Have an elementary grasp of deep learning concepts and algorithms. Have achieved a technical background in deep learning and neural networks using Python. Target UsersThe book designed for a variety of target audiences. Anyone who is intrigued by how algorithms arrive at predictions but has no previous knowledge of the field. Software developers and engineers with a strong programming background but seeking to break into the field of machine learning. Seasoned professionals in the field of artificial intelligence and deep learning who desire a bird's eye view of current techniques and approaches. What's Inside This Book? Introduction What is Artificial Intelligence, Machine Learning and Deep Learning? Mathematical Foundations of Deep Learning Understanding Machine Learning Models Evaluation of Machine Learning Models: Overfitting, Underfitting, Bias Variance Tradeoff Fully Connected Neural Networks Convolutional Neural Networks Recurrent Neural Networks Generative Adversarial Networks Deep Reinforcement Learning Introduction to Deep Neural Networks with Keras A First Look at Neural Networks in Keras Introduction to Pytorch The Pytorch Deep Learning Framework Your First Neural Network in Pytorch Deep Learning for Computer Vision Build a Convolutional Neural Network Deep Learning for Natural Language Processing Working with Sequential Data Build a Recurrent Neural Network Frequently Asked Questions Q: Is this book for me and do I need programming experience?A: if you want to smash Deep Learning from scratch, this book is for you. Little programming experience is required. If you already wrote a few lines of code and recognize basic programming statements, you'll be OK. Q: Can I have a refund if this book doesn't fit for me?A: Yes, Amazon refund you if you aren't satisfied, for more information about the amazon refund service please go to the amazon help platform. We will also be happy to help you if you send us an email.***** MONEY BACK GUARANTEE BY AMAZON ***** Editorial Reviews"This is an excellent book, it is a very good introduction to deep learning and neural networks. The concepts and terminology are clearly explained. The book also points out several good locations on the internet where users can obtain more information. I was extremely happy with this book and I recommend it for all beginners" - Prof. Alain Simon, EDHEC Business School. Statistician and DataScientist.



Artificial Intelligence With Python


Artificial Intelligence With Python
DOWNLOAD
Author : Prateek Joshi
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-01-27

Artificial Intelligence With Python written by Prateek Joshi and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-27 with Computers categories.


Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Introduction To Deep Learning


Introduction To Deep Learning
DOWNLOAD
Author : Eugene Charniak
language : en
Publisher: MIT Press
Release Date : 2019-01-29

Introduction To Deep Learning written by Eugene Charniak and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-29 with Computers categories.


A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.



Deploying Machine Learning


Deploying Machine Learning
DOWNLOAD
Author : Robbie Allen
language : en
Publisher: Addison-Wesley Professional
Release Date : 2019-05

Deploying Machine Learning written by Robbie Allen and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05 with Computers categories.


Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.



Python Machine Learning


Python Machine Learning
DOWNLOAD
Author : Wei-Meng Lee
language : en
Publisher: John Wiley & Sons
Release Date : 2019-04-04

Python Machine Learning written by Wei-Meng Lee and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-04 with Computers categories.


Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.