[PDF] Advanced Algorithms For Neural Networks - eBooks Review

Advanced Algorithms For Neural Networks


Advanced Algorithms For Neural Networks
DOWNLOAD

Download Advanced Algorithms For Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Algorithms For Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advanced Algorithms For Neural Networks


Advanced Algorithms For Neural Networks
DOWNLOAD
Author : Timothy Masters
language : en
Publisher:
Release Date : 1995-04-17

Advanced Algorithms For Neural Networks written by Timothy Masters and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-04-17 with Computers categories.


This is one of the first books to offer practical in-depth coverage of the Probabilistic Neural Network (PNN) and several other neural nets and their related algorithms critical to solving some of today's toughest real-world computing problems. Includes complete C++ source code for basic and advanced applications.



Advanced Applied Deep Learning


Advanced Applied Deep Learning
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher: Apress
Release Date : 2019-09-28

Advanced Applied Deep Learning written by Umberto Michelucci and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-28 with Computers categories.


Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level. What You Will Learn See how convolutional neural networks and object detection work Save weights and models on disk Pause training and restart it at a later stage Use hardware acceleration (GPUs) in your code Work with the Dataset TensorFlow abstraction and use pre-trained models and transfer learning Remove and add layers to pre-trained networks to adapt them to your specific project Apply pre-trained models such as Alexnet and VGG16 to new datasets Who This Book Is For Scientists and researchers with intermediate-to-advanced Python and machine learning know-how. Additionally, intermediate knowledge of Keras and TensorFlow is expected.



Neural Networks And Deep Learning


Neural Networks And Deep Learning
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2018-08-25

Neural Networks And Deep Learning written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-25 with Computers categories.


This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.



Advanced Decision Sciences Based On Deep Learning And Ensemble Learning Algorithms


Advanced Decision Sciences Based On Deep Learning And Ensemble Learning Algorithms
DOWNLOAD
Author : S. Sumathi
language : en
Publisher: Nova Science Publishers
Release Date : 2021

Advanced Decision Sciences Based On Deep Learning And Ensemble Learning Algorithms written by S. Sumathi and has been published by Nova Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Business & Economics categories.


"Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms: A Practical Approach Using Python describes the deep learning models and ensemble approaches applied to decision-making problems. The authors have addressed the concepts of deep learning, convolutional neural networks, recurrent neural networks, and ensemble learning in a practical sense providing complete code and implementation for several real-world examples. The authors of this book teach the concepts of machine learning for undergraduate and graduate-level classes and have worked with Fortune 500 clients to formulate data analytics strategies and operationalize these strategies. The book will benefit information professionals, programmers, consultants, professors, students, and industry experts who seek a variety of real-world illustrations with an implementation based on machine learning algorithms"--



Neural Networks In Finance


Neural Networks In Finance
DOWNLOAD
Author : Paul D. McNelis
language : en
Publisher: Elsevier
Release Date : 2005-01-20

Neural Networks In Finance written by Paul D. McNelis and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-20 with Computers categories.


This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong.* Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website



Mastering Neural Networks


Mastering Neural Networks
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date :

Mastering Neural Networks written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Unleash the Power of Deep Learning for Intelligent Systems In the realm of artificial intelligence and machine learning, neural networks stand as the driving force behind intelligent systems that mimic human cognition. "Mastering Neural Networks" is your ultimate guide to comprehending and harnessing the potential of these powerful algorithms, empowering you to create intelligent solutions that push the boundaries of innovation. About the Book: As technology advances, the capabilities of neural networks become more integral to various fields. "Mastering Neural Networks" offers an in-depth exploration of this cutting-edge subject—an essential toolkit for data scientists, engineers, and enthusiasts. This book caters to both newcomers and experienced learners aiming to excel in neural network concepts, architectures, and applications. Key Features: Neural Network Fundamentals: Begin by understanding the core principles of neural networks. Learn about artificial neurons, activation functions, and the architecture of these powerful algorithms. Feedforward Neural Networks: Dive into feedforward neural networks. Explore techniques for designing, training, and optimizing networks for various tasks. Convolutional Neural Networks: Grasp the art of convolutional neural networks. Understand how these architectures excel in image and pattern recognition tasks. Recurrent Neural Networks: Explore recurrent neural networks. Learn how to process sequences and time-series data, making them suitable for tasks like language modeling and speech recognition. Generative Adversarial Networks: Understand the significance of generative adversarial networks. Explore how these networks enable the generation of realistic images, text, and data. Transfer Learning and Fine-Tuning: Delve into transfer learning. Learn how to leverage pretrained models and adapt them to new tasks, saving time and resources. Neural Network Optimization: Grasp optimization techniques. Explore methods for improving network performance, reducing overfitting, and tuning hyperparameters. Real-World Applications: Gain insights into how neural networks are applied across industries. From healthcare to finance, discover the diverse applications of these algorithms. Why This Book Matters: In a world driven by intelligent systems, mastering neural networks offers a competitive advantage. "Mastering Neural Networks" empowers data scientists, engineers, and technology enthusiasts to leverage these cutting-edge algorithms, enabling them to create intelligent solutions that redefine the boundaries of innovation. Unleash the Future of Intelligence: In the landscape of artificial intelligence, neural networks are reshaping technology and innovation. "Mastering Neural Networks" equips you with the knowledge needed to leverage these powerful algorithms, enabling you to create intelligent solutions that push the boundaries of innovation and redefine what's possible. Whether you're a seasoned practitioner or new to the world of neural networks, this book will guide you in building a solid foundation for effective AI-driven solutions. Your journey to mastering neural networks starts here. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com



Algorithms


Algorithms
DOWNLOAD
Author : Rob Botwright
language : en
Publisher: Rob Botwright
Release Date : 2024

Algorithms written by Rob Botwright and has been published by Rob Botwright this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Computers categories.


Introducing "ALGORITHMS: COMPUTER SCIENCE UNVEILED" - Your Path to Algorithmic Mastery! Are you fascinated by the world of computer science and the magic of algorithms? Do you want to unlock the power of algorithmic thinking and take your skills to expert levels? Look no further! This exclusive book bundle is your comprehensive guide to mastering the art of algorithms and conquering the exciting realm of computer science. 📘 BOOK 1 - COMPUTER SCIENCE: ALGORITHMS UNVEILED 📘 · Dive into the fundamentals of algorithms. · Perfect for beginners and those new to computer science. · Learn the building blocks of algorithmic thinking. · Lay a strong foundation for your journey into the world of algorithms. 📘 BOOK 2 - MASTERING ALGORITHMS: FROM BASICS TO EXPERT LEVEL 📘 · Take your algorithmic skills to new heights. · Explore advanced sorting and searching techniques. · Uncover the power of dynamic programming and greedy algorithms. · Ideal for students and professionals looking to become algorithmic experts. 📘 BOOK 3 - ALGORITHMIC MASTERY: A JOURNEY FROM NOVICE TO GURU 📘 · Embark on a transformative journey from novice to guru. · Master divide and conquer strategies. · Discover advanced data structures and their applications. · Tackle algorithmic challenges that demand mastery. · Suitable for anyone seeking to elevate their problem-solving abilities. 📘 BOOK 4 - ALGORITHMIC WIZARDRY: UNRAVELING COMPLEXITY FOR EXPERTS 📘 · Push the boundaries of your algorithmic expertise. · Explore expert-level techniques and conquer puzzles. · Unleash the full power of algorithmic mastery. · For those who aspire to become true algorithmic wizards. Why Choose "ALGORITHMS: COMPUTER SCIENCE UNVEILED"? 🌟 Comprehensive Learning: Covering the entire spectrum of algorithmic knowledge, this bundle caters to beginners and experts alike. 🌟 Progression: Start with the basics and gradually advance to expert-level techniques, making it accessible for learners at all stages. 🌟 Real-World Application: Gain practical skills and problem-solving abilities that are highly sought after in the world of computer science. 🌟 Expert Authors: Written by experts in the field, each book provides clear explanations and hands-on examples. 🌟 Career Advancement: Enhance your career prospects with a deep understanding of algorithms, an essential skill in today's tech-driven world. Unlock the Secrets of Computer Science Today! Whether you're a student, a professional, or simply curious about computer science, "ALGORITHMS: COMPUTER SCIENCE UNVEILED" is your gateway to a world of knowledge and expertise. Don't miss this opportunity to acquire a valuable skill set that can propel your career to new heights. Get your copy now and embark on a journey to algorithmic mastery!



Hands On Deep Learning Algorithms With Python


Hands On Deep Learning Algorithms With Python
DOWNLOAD
Author : Sudharsan Ravichandiran
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-07-25

Hands On Deep Learning Algorithms With Python written by Sudharsan Ravichandiran and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-25 with Computers categories.


Understand basic to advanced deep learning algorithms, the mathematical principles behind them, and their practical applications. Key FeaturesGet up-to-speed with building your own neural networks from scratch Gain insights into the mathematical principles behind deep learning algorithmsImplement popular deep learning algorithms such as CNNs, RNNs, and more using TensorFlowBook Description Deep learning is one of the most popular domains in the AI space, allowing you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles behind it, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into RNNs and LSTM and how to generate song lyrics with RNN. Next, you will master the math for convolutional and capsule networks, widely used for image recognition tasks. Then you learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Afterward, you will explore various GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects. What you will learnImplement basic-to-advanced deep learning algorithmsMaster the mathematics behind deep learning algorithmsBecome familiar with gradient descent and its variants, such as AMSGrad, AdaDelta, Adam, and NadamImplement recurrent networks, such as RNN, LSTM, GRU, and seq2seq modelsUnderstand how machines interpret images using CNN and capsule networksImplement different types of generative adversarial network, such as CGAN, CycleGAN, and StackGANExplore various types of autoencoder, such as Sparse autoencoders, DAE, CAE, and VAEWho this book is for If you are a machine learning engineer, data scientist, AI developer, or simply want to focus on neural networks and deep learning, this book is for you. Those who are completely new to deep learning, but have some experience in machine learning and Python programming, will also find the book very helpful.



Advanced Methods In Neural Computing


Advanced Methods In Neural Computing
DOWNLOAD
Author : Philip D. Wasserman
language : en
Publisher: Van Nostrand Reinhold Company
Release Date : 1993

Advanced Methods In Neural Computing written by Philip D. Wasserman and has been published by Van Nostrand Reinhold Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Computers categories.


This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.



Axionomics


Axionomics
DOWNLOAD
Author : Ronald Legarski
language : en
Publisher: SolveForce
Release Date : 2025-02-24

Axionomics written by Ronald Legarski and has been published by SolveForce this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-24 with Philosophy categories.


Axionomics presents a comprehensive, recursive framework that unifies axiomatic principles, atomic structures, quantum mechanics, and decentralized knowledge systems into a self-regulating, axiom-driven knowledge and energy economy. By integrating linguistic organization, artificial intelligence (AI), blockchain-backed verification, and decentralized scientific governance, this revolutionary model creates a seamless bridge between foundational principles and applied systems. Operating simultaneously across quantum, atomic, and macroscopic organizational scales, Axionomics leverages recursive feedback loops and self-referential processes to enable continuous adaptation and optimization. This dynamic, self-evolving architecture refines itself in response to new discoveries while preserving core axiomatic integrity, ensuring the stability of knowledge structures even in rapidly advancing scientific fields. By fostering interdisciplinary collaboration, Axionomics reshapes scientific inquiry, computational intelligence, and organizational governance. This system transcends conventional limitations, offering a self-optimizing knowledge ecosystem that harmonizes theory and practice, unlocking new frontiers in innovation, knowledge distribution, and decentralized intelligence networks. As a transformative model, Axionomics redefines how we understand, verify, and apply knowledge, setting the foundation for a future driven by recursive intelligence, axiomatic reasoning, and sustainable progress.