[PDF] Advanced Methods In Neural Computing - eBooks Review

Advanced Methods In Neural Computing


Advanced Methods In Neural Computing
DOWNLOAD

Download Advanced Methods In Neural Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Advanced Methods In Neural Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Advanced Methods In Neural Computing


Advanced Methods In Neural Computing
DOWNLOAD
Author : Philip D. Wasserman
language : en
Publisher: Van Nostrand Reinhold Company
Release Date : 1993

Advanced Methods In Neural Computing written by Philip D. Wasserman and has been published by Van Nostrand Reinhold Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Computers categories.


This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.



Advanced Applied Deep Learning


Advanced Applied Deep Learning
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher: Apress
Release Date : 2019-09-28

Advanced Applied Deep Learning written by Umberto Michelucci and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-28 with Computers categories.


Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level. What You Will Learn See how convolutional neural networks and object detection work Save weights and models on disk Pause training and restart it at a later stage Use hardware acceleration (GPUs) in your code Work with the Dataset TensorFlow abstraction and use pre-trained models and transfer learning Remove and add layers to pre-trained networks to adapt them to your specific project Apply pre-trained models such as Alexnet and VGG16 to new datasets Who This Book Is For Scientists and researchers with intermediate-to-advanced Python and machine learning know-how. Additionally, intermediate knowledge of Keras and TensorFlow is expected.



Handbook Of Neural Computation


Handbook Of Neural Computation
DOWNLOAD
Author : Pijush Samui
language : en
Publisher: Academic Press
Release Date : 2017-07-18

Handbook Of Neural Computation written by Pijush Samui and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-18 with Technology & Engineering categories.


Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods



Neural Computing


Neural Computing
DOWNLOAD
Author : Philip D. Wasserman
language : en
Publisher: Van Nostrand Reinhold Company
Release Date : 1989

Neural Computing written by Philip D. Wasserman and has been published by Van Nostrand Reinhold Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989 with Computers categories.


This book for nonspecialists clearly explains major algorithms and demystifies the rigorous math involved in neural networks. Uses a step-by-step approach for implementing commonly used paradigms.



Advanced Models Of Neural Networks


Advanced Models Of Neural Networks
DOWNLOAD
Author : Gerasimos G. Rigatos
language : en
Publisher: Springer
Release Date : 2014-08-27

Advanced Models Of Neural Networks written by Gerasimos G. Rigatos and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-27 with Technology & Engineering categories.


This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.



Applied Deep Learning


Applied Deep Learning
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher: Apress
Release Date : 2018-09-07

Applied Deep Learning written by Umberto Michelucci and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-07 with Computers categories.


Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.



Process Neural Networks


Process Neural Networks
DOWNLOAD
Author : Xingui He
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-05

Process Neural Networks written by Xingui He and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-05 with Computers categories.


"Process Neural Network: Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks and enhances the expression capability for practical problems, with broad applicability to solving problems relating to processes in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are closely examined. The application methods, network construction principles, and optimization algorithms of process neural networks in practical fields, such as nonlinear time-varying system modeling, process signal pattern recognition, dynamic system identification, and process forecast, are discussed in detail. The information processing flow and the mapping relationship between inputs and outputs of process neural networks are richly illustrated. Xingui He is a member of Chinese Academy of Engineering and also a professor at the School of Electronic Engineering and Computer Science, Peking University, China, where Shaohua Xu also serves as a professor.



Static And Dynamic Neural Networks


Static And Dynamic Neural Networks
DOWNLOAD
Author : Madan Gupta
language : en
Publisher: John Wiley & Sons
Release Date : 2004-04-05

Static And Dynamic Neural Networks written by Madan Gupta and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-05 with Computers categories.


Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen.



Artificial Neural Networks


Artificial Neural Networks
DOWNLOAD
Author : Joao Luis Garcia Rosa
language : en
Publisher: BoD – Books on Demand
Release Date : 2016-10-19

Artificial Neural Networks written by Joao Luis Garcia Rosa and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-19 with Computers categories.


The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.



Principles Of Artificial Neural Networks


Principles Of Artificial Neural Networks
DOWNLOAD
Author : Daniel Graupe
language : en
Publisher: World Scientific
Release Date : 2007

Principles Of Artificial Neural Networks written by Daniel Graupe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


This book should serves as a self-study course for engineers and computer scientist in the industry. The features include major neural network approaches and architectures with theories and detailed case studies for each of the approaches acompanied by complete computer codes and the corresponding computed results. There is also a chapter on LAMSTAR neural network.