Age Of Inference

DOWNLOAD
Download Age Of Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Age Of Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Computer Age Statistical Inference Student Edition
DOWNLOAD
Author : Bradley Efron
language : en
Publisher: Cambridge University Press
Release Date : 2021-06-17
Computer Age Statistical Inference Student Edition written by Bradley Efron and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-17 with Computers categories.
Now in paperback and fortified with exercises, this brilliant, enjoyable text demystifies data science, statistics and machine learning.
Computer Age Statistical Inference
DOWNLOAD
Author : Bradley Efron
language : en
Publisher: Cambridge University Press
Release Date : 2016-07-21
Computer Age Statistical Inference written by Bradley Efron and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-21 with Mathematics categories.
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Age Of Inference
DOWNLOAD
Author : Philip C. Short
language : en
Publisher: IAP
Release Date : 2021-12-01
Age Of Inference written by Philip C. Short and has been published by IAP this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-01 with Education categories.
In an age where we are inundated with information, the ability to discern verifiable information to make proper decisions and solve problems is ever more critical. Modern science, which espouses a systematic approach to making “inferences,” requires a certain mindset that allows for a degree of comfort with uncertainty. This book offers inspirations and ideas for cultivating the proper mindset for the studying, teaching, and practicing of science that will be useful for those new to as well as familiar with the field. Although a paradigm shift from traditional instruction is suggested in the National Framework for K-12 science, this volume is intended to help educators develop a personal mental framework in which to transition from a teacher-centered, didactical approach to a student-centered, evidence-guided curriculum. While the topics of the book derive from currently published literature on STEM education as they relate to the National Framework for K-12 Science and the Three-Dimensional science instruction embedded in the Next Generation Science Standards, this book also examines these topics in the context of a new societal age posited as the “Age of Inference” and addresses how to make sense of the ever-increasing deluge of information that we are experiencing by having a scientific and properly discerning mindset. ENDORSEMENTS: "This volume takes on one of the thorniest existential problems of our time, the contradiction between the exponentially growing amount of information that individuals have access to, and the diminished capacity of those individuals to understand it. Its chapters provide the reader with an introduction to the relationship between knowledge, science, and inference; needed new approaches to learning science in our new data rich world; and a discussion of what we can and must do to reduce or eliminate the growing gap between the inference have’s and have nots. It is not too much to say that how we resolve the issues outlined in this volume will determine the future of our species on this planet." — Joseph L. Graves Jr., Professor of Biological Sciences North Carolina A&T State University, Fellow, American Association for the Advancement of Science: Biological Sciences, Author of: The Emperor’s New Clothes: Biological Theories of Race at the Millennium "Big data is not enough for addressing dangers to the environment or tackling threats to democracy; we need the ability to draw sound inferences from the data. Cultivating a scientific mindset requires fundamental changes to the way we teach and learn. This important and well -written volume shows how." — Ashok Goel, Professor of Computer Science and Human Centered Computing, Georgia Institute of Technology. Editor of AI Magazine Founding Editor of AAAI’s Interactive AI Magazine "If you are a science teacher concerned about the implications of information overload, analysis paralysis, and intellectual complacency on our health, economic future, and democracy, then I recommend this book." — Michael Svec, Professor for Physics and Astronomy Education, Furman University, Fulbright Scholar to Czech Republic
Statistical Inference In Science
DOWNLOAD
Author : D.A. Sprott
language : en
Publisher: Springer Science & Business Media
Release Date : 2000-06-22
Statistical Inference In Science written by D.A. Sprott and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-06-22 with Mathematics categories.
A treatment of the problems of inference associated with experiments in science, with the emphasis on techniques for dividing the sample information into various parts, such that the diverse problems of inference that arise from repeatable experiments may be addressed. A particularly valuable feature is the large number of practical examples, many of which use data taken from experiments published in various scientific journals. This book evolved from the authors own courses on statistical inference, and assumes an introductory course in probability, including the calculation and manipulation of probability functions and density functions, transformation of variables and the use of Jacobians. While this is a suitable text book for advanced undergraduate, Masters, and Ph.D. statistics students, it may also be used as a reference book.
Statistical And Inductive Inference By Minimum Message Length
DOWNLOAD
Author : C.S. Wallace
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-05-26
Statistical And Inductive Inference By Minimum Message Length written by C.S. Wallace and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-05-26 with Computers categories.
The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.
Large Scale Inference
DOWNLOAD
Author : Bradley Efron
language : en
Publisher: Cambridge University Press
Release Date : 2012-11-29
Large Scale Inference written by Bradley Efron and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-29 with Mathematics categories.
We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.
Statistical Inference As Severe Testing
DOWNLOAD
Author : Deborah G. Mayo
language : en
Publisher: Cambridge University Press
Release Date : 2018-09-20
Statistical Inference As Severe Testing written by Deborah G. Mayo and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-20 with Mathematics categories.
Unlock today's statistical controversies and irreproducible results by viewing statistics as probing and controlling errors.
Causal Inference
DOWNLOAD
Author : Scott Cunningham
language : en
Publisher: Yale University Press
Release Date : 2021-01-26
Causal Inference written by Scott Cunningham and has been published by Yale University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-26 with Business & Economics categories.
An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the basis of arguments—economic and otherwise—since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It’s rare that a book prompts readers to expand their outlook; this one did for me.”—Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied—for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.
The Sage Handbook Of Regression Analysis And Causal Inference
DOWNLOAD
Author : Henning Best
language : en
Publisher: SAGE
Release Date : 2013-12-20
The Sage Handbook Of Regression Analysis And Causal Inference written by Henning Best and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-20 with Social Science categories.
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Methods Matter
DOWNLOAD
Author : Richard J. Murnane
language : en
Publisher: Oxford University Press
Release Date : 2010-09-17
Methods Matter written by Richard J. Murnane and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-17 with Psychology categories.
Educational policy-makers around the world constantly make decisions about how to use scarce resources to improve the education of children. Unfortunately, their decisions are rarely informed by evidence on the consequences of these initiatives in other settings. Nor are decisions typically accompanied by well-formulated plans to evaluate their causal impacts. As a result, knowledge about what works in different situations has been very slow to accumulate. Over the last several decades, advances in research methodology, administrative record keeping, and statistical software have dramatically increased the potential for researchers to conduct compelling evaluations of the causal impacts of educational interventions, and the number of well-designed studies is growing. Written in clear, concise prose, Methods Matter: Improving Causal Inference in Educational and Social Science Research offers essential guidance for those who evaluate educational policies. Using numerous examples of high-quality studies that have evaluated the causal impacts of important educational interventions, the authors go beyond the simple presentation of new analytical methods to discuss the controversies surrounding each study, and provide heuristic explanations that are also broadly accessible. Murnane and Willett offer strong methodological insights on causal inference, while also examining the consequences of a wide variety of educational policies implemented in the U.S. and abroad. Representing a unique contribution to the literature surrounding educational research, this landmark text will be invaluable for students and researchers in education and public policy, as well as those interested in social science.