Algorithmic And Artificial Intelligence Methods For Protein Bioinformatics

DOWNLOAD
Download Algorithmic And Artificial Intelligence Methods For Protein Bioinformatics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Algorithmic And Artificial Intelligence Methods For Protein Bioinformatics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Algorithmic And Artificial Intelligence Methods For Protein Bioinformatics
DOWNLOAD
Author : Yi Pan
language : en
Publisher: John Wiley & Sons
Release Date : 2013-10-07
Algorithmic And Artificial Intelligence Methods For Protein Bioinformatics written by Yi Pan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-07 with Medical categories.
Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics An in-depth look at the latest research, methods, and applications in the field of protein bioinformatics This book presents the latest developments in protein bioinformatics, introducing for the first time cutting-edge research results alongside novel algorithmic and AI methods for the analysis of protein data. In one complete, self-contained volume, Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics addresses key challenges facing both computer scientists and biologists, arming readers with tools and techniques for analyzing and interpreting protein data and solving a variety of biological problems. Featuring a collection of authoritative articles by leaders in the field, this work focuses on the analysis of protein sequences, structures, and interaction networks using both traditional algorithms and AI methods. It also examines, in great detail, data preparation, simulation, experiments, evaluation methods, and applications. Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics: Highlights protein analysis applications such as protein-related drug activity comparison Incorporates salient case studies illustrating how to apply the methods outlined in the book Tackles the complex relationship between proteins from a systems biology point of view Relates the topic to other emerging technologies such as data mining and visualization Includes many tables and illustrations demonstrating concepts and performance figures Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics is an essential reference for bioinformatics specialists in research and industry, and for anyone wishing to better understand the rich field of protein bioinformatics.
Algorithmic And Artificial Intelligence Methods For Protein Bioinformatics
DOWNLOAD
Author : Yi Pan
language : en
Publisher: John Wiley & Sons
Release Date : 2013-11-12
Algorithmic And Artificial Intelligence Methods For Protein Bioinformatics written by Yi Pan and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-12 with Medical categories.
Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics An in-depth look at the latest research, methods, and applications in the field of protein bioinformatics This book presents the latest developments in protein bioinformatics, introducing for the first time cutting-edge research results alongside novel algorithmic and AI methods for the analysis of protein data. In one complete, self-contained volume, Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics addresses key challenges facing both computer scientists and biologists, arming readers with tools and techniques for analyzing and interpreting protein data and solving a variety of biological problems. Featuring a collection of authoritative articles by leaders in the field, this work focuses on the analysis of protein sequences, structures, and interaction networks using both traditional algorithms and AI methods. It also examines, in great detail, data preparation, simulation, experiments, evaluation methods, and applications. Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics: Highlights protein analysis applications such as protein-related drug activity comparison Incorporates salient case studies illustrating how to apply the methods outlined in the book Tackles the complex relationship between proteins from a systems biology point of view Relates the topic to other emerging technologies such as data mining and visualization Includes many tables and illustrations demonstrating concepts and performance figures Algorithmic and Artificial Intelligence Methods for Protein Bioinformatics is an essential reference for bioinformatics specialists in research and industry, and for anyone wishing to better understand the rich field of protein bioinformatics.
Introduction To Protein Structure Prediction
DOWNLOAD
Author : Huzefa Rangwala
language : en
Publisher: John Wiley & Sons
Release Date : 2011-03-16
Introduction To Protein Structure Prediction written by Huzefa Rangwala and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-16 with Science categories.
A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.
Machine Learning In Bioinformatics
DOWNLOAD
Author : Yanqing Zhang
language : en
Publisher: John Wiley & Sons
Release Date : 2009-02-23
Machine Learning In Bioinformatics written by Yanqing Zhang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-23 with Computers categories.
An introduction to machine learning methods and their applications to problems in bioinformatics Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. From an internationally recognized panel of prominent researchers in the field, Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics. Coverage includes: feature selection for genomic and proteomic data mining; comparing variable selection methods in gene selection and classification of microarray data; fuzzy gene mining; sequence-based prediction of residue-level properties in proteins; probabilistic methods for long-range features in biosequences; and much more. Machine Learning in Bioinformatics is an indispensable resource for computer scientists, engineers, biologists, mathematicians, researchers, clinicians, physicians, and medical informaticists. It is also a valuable reference text for computer science, engineering, and biology courses at the upper undergraduate and graduate levels.
Recent Advances In Biological Network Analysis
DOWNLOAD
Author : Byung-Jun Yoon
language : en
Publisher: Springer Nature
Release Date : 2021-01-13
Recent Advances In Biological Network Analysis written by Byung-Jun Yoon and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-13 with Medical categories.
This book reviews recent advances in the emerging field of computational network biology with special emphasis on comparative network analysis and network module detection. The chapters in this volume are contributed by leading international researchers in computational network biology and offer in-depth insight on the latest techniques in network alignment, network clustering, and network module detection. Chapters discuss the advantages of the respective techniques and present the current challenges and open problems in the field. Recent Advances in Biological Network Analysis: Comparative Network Analysis and Network Module Detection will serve as a great resource for graduate students, academics, and researchers who are currently working in areas relevant to computational network biology or wish to learn more about the field. Data scientists whose work involves the analysis of graphs, networks, and other types of data with topological structure or relations can also benefit from the book's insights.
Bioinformatics Algorithms
DOWNLOAD
Author : Ion Mandoiu
language : en
Publisher: John Wiley & Sons
Release Date : 2008-02-25
Bioinformatics Algorithms written by Ion Mandoiu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-02-25 with Computers categories.
Presents algorithmic techniques for solving problems in bioinformatics, including applications that shed new light on molecular biology This book introduces algorithmic techniques in bioinformatics, emphasizing their application to solving novel problems in post-genomic molecular biology. Beginning with a thought-provoking discussion on the role of algorithms in twenty-first-century bioinformatics education, Bioinformatics Algorithms covers: General algorithmic techniques, including dynamic programming, graph-theoretical methods, hidden Markov models, the fast Fourier transform, seeding, and approximation algorithms Algorithms and tools for genome and sequence analysis, including formal and approximate models for gene clusters, advanced algorithms for non-overlapping local alignments and genome tilings, multiplex PCR primer set selection, and sequence/network motif finding Microarray design and analysis, including algorithms for microarray physical design, missing value imputation, and meta-analysis of gene expression data Algorithmic issues arising in the analysis of genetic variation across human population, including computational inference of haplotypes from genotype data and disease association search in case/control epidemiologic studies Algorithmic approaches in structural and systems biology, including topological and structural classification in biochemistry, and prediction of protein-protein and domain-domain interactions Each chapter begins with a self-contained introduction to a computational problem; continues with a brief review of the existing literature on the subject and an in-depth description of recent algorithmic and methodological developments; and concludes with a brief experimental study and a discussion of open research challenges. This clear and approachable presentation makes the book appropriate for researchers, practitioners, and graduate students alike.
Multiple Biological Sequence Alignment
DOWNLOAD
Author : Ken Nguyen
language : en
Publisher: John Wiley & Sons
Release Date : 2016-06-10
Multiple Biological Sequence Alignment written by Ken Nguyen and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-10 with Science categories.
Covers the fundamentals and techniques of multiple biological sequence alignment and analysis, and shows readers how to choose the appropriate sequence analysis tools for their tasks This book describes the traditional and modern approaches in biological sequence alignment and homology search. This book contains 11 chapters, with Chapter 1 providing basic information on biological sequences. Next, Chapter 2 contains fundamentals in pair-wise sequence alignment, while Chapters 3 and 4 examine popular existing quantitative models and practical clustering techniques that have been used in multiple sequence alignment. Chapter 5 describes, characterizes and relates many multiple sequence alignment models. Chapter 6 describes how traditionally phylogenetic trees have been constructed, and available sequence knowledge bases can be used to improve the accuracy of reconstructing phylogeny trees. Chapter 7 covers the latest methods developed to improve the run-time efficiency of multiple sequence alignment. Next, Chapter 8 covers several popular existing multiple sequence alignment server and services, and Chapter 9 examines several multiple sequence alignment techniques that have been developed to handle short sequences (reads) produced by the Next Generation Sequencing technique (NSG). Chapter 10 describes a Bioinformatics application using multiple sequence alignment of short reads or whole genomes as input. Lastly, Chapter 11 provides a review of RNA and protein secondary structure prediction using the evolution information inferred from multiple sequence alignments. • Covers the full spectrum of the field, from alignment algorithms to scoring methods, practical techniques, and alignment tools and their evaluations • Describes theories and developments of scoring functions and scoring matrices •Examines phylogeny estimation and large-scale homology search Multiple Biological Sequence Alignment: Scoring Functions, Algorithms and Applications is a reference for researchers, engineers, graduate and post-graduate students in bioinformatics, and system biology and molecular biologists. Ken Nguyen, PhD, is an associate professor at Clayton State University, GA, USA. He received his PhD, MSc and BSc degrees in computer science all from Georgia State University. His research interests are in databases, parallel and distribute computing and bioinformatics. He was a Molecular Basis of Disease fellow at Georgia State and is the recipient of the highest graduate honor at Georgia State, the William M. Suttles Graduate Fellowship. Xuan Guo, PhD, is a postdoctoral associate at Oak Ridge National Lab, USA. He received his PhD degree in computer science from Georgia State University in 2015. His research interests are in bioinformatics, machine leaning, and cloud computing. He is an editorial assistant of International Journal of Bioinformatics Research and Applications. Yi Pan, PhD, is a Regents' Professor of Computer Science and an Interim Associate Dean and Chair of Biology at Georgia State University. He received his BE and ME in computer engineering from Tsinghua University in China and his PhD in computer science from the University of Pittsburgh. Dr. Pan's research interests include parallel and distributed computing, optical networks, wireless networks and bioinformatics. He has published more than 180 journal papers with about 60 papers published in various IEEE/ACM journals. He is co-editor along with Albert Y. Zomaya of the Wiley Series in Bioinformatics.
Outsmarting Ai
DOWNLOAD
Author : Brennan Pursell
language : en
Publisher: Bloomsbury Publishing PLC
Release Date : 2020-08-15
Outsmarting Ai written by Brennan Pursell and has been published by Bloomsbury Publishing PLC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-15 with Business & Economics categories.
From factories to smartphones, Artificial Intelligence is already taking over. Outsmarting AI is not a how-to guide on making AI work, but making it work for YOU to boost profits and productivity. Each development in Artificial Intelligence (AI) technology brings about apprehension and panic for the future of society and for business. We’re bombarded with stories about the impending human-less workplace; it is no longer a question if man can be replaced by machine in certain tasks, but when. However, AI was not manufactured to destroy life as we know it. These emerging technologies were developed and are constantly updating with a particular goal in mind: optimization. AI feeds on data and information to improve outputs and increase potential. With this enhanced productivity, profit and productivity will be sure to follow. Written by Brennan Pursell, a business consultant and professor who hates jargon, and Joshua Walker, an AI pioneer with 18 years of experience in solutions and applications, Outsmarting AI is the first plain-English how-to guide on adapting AI for the non-coding proficient business leader. This book will help readers to Cut through the fog of AI hypeSee exactly what AI can actually do for people in businessIdentify the areas of their organization in most need of AI toolsPrepare and control their data – AI is useless without itAdopt AI and develop the right culture to support itTrack the productivity boost, cost savings, and increased profits Manage and minimize the threat of crippling lawsuits
Biomedical Data Mining For Information Retrieval
DOWNLOAD
Author : Sujata Dash
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-24
Biomedical Data Mining For Information Retrieval written by Sujata Dash and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-24 with Computers categories.
BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.
Evolutionary Computation In Gene Regulatory Network Research
DOWNLOAD
Author : Hitoshi Iba
language : en
Publisher: John Wiley & Sons
Release Date : 2016-01-21
Evolutionary Computation In Gene Regulatory Network Research written by Hitoshi Iba and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-21 with Computers categories.
Introducing a handbook for gene regulatory network research using evolutionary computation, with applications for computer scientists, computational and system biologists This book is a step-by-step guideline for research in gene regulatory networks (GRN) using evolutionary computation (EC). The book is organized into four parts that deliver materials in a way equally attractive for a reader with training in computation or biology. Each of these sections, authored by well-known researchers and experienced practitioners, provides the relevant materials for the interested readers. The first part of this book contains an introductory background to the field. The second part presents the EC approaches for analysis and reconstruction of GRN from gene expression data. The third part of this book covers the contemporary advancements in the automatic construction of gene regulatory and reaction networks and gives direction and guidelines for future research. Finally, the last part of this book focuses on applications of GRNs with EC in other fields, such as design, engineering and robotics. • Provides a reference for current and future research in gene regulatory networks (GRN) using evolutionary computation (EC) • Covers sub-domains of GRN research using EC, such as expression profile analysis, reverse engineering, GRN evolution, applications • Contains useful contents for courses in gene regulatory networks, systems biology, computational biology, and synthetic biology • Delivers state-of-the-art research in genetic algorithms, genetic programming, and swarm intelligence Evolutionary Computation in Gene Regulatory Network Research is a reference for researchers and professionals in computer science, systems biology, and bioinformatics, as well as upper undergraduate, graduate, and postgraduate students. Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Toyko, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012 he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.