Amazon Sagemaker Best Practices

DOWNLOAD
Download Amazon Sagemaker Best Practices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Amazon Sagemaker Best Practices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Amazon Sagemaker Best Practices
DOWNLOAD
Author : Sireesha Muppala
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-24
Amazon Sagemaker Best Practices written by Sireesha Muppala and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-24 with Computers categories.
Overcome advanced challenges in building end-to-end ML solutions by leveraging the capabilities of Amazon SageMaker for developing and integrating ML models into production Key FeaturesLearn best practices for all phases of building machine learning solutions - from data preparation to monitoring models in productionAutomate end-to-end machine learning workflows with Amazon SageMaker and related AWSDesign, architect, and operate machine learning workloads in the AWS CloudBook Description Amazon SageMaker is a fully managed AWS service that provides the ability to build, train, deploy, and monitor machine learning models. The book begins with a high-level overview of Amazon SageMaker capabilities that map to the various phases of the machine learning process to help set the right foundation. You'll learn efficient tactics to address data science challenges such as processing data at scale, data preparation, connecting to big data pipelines, identifying data bias, running A/B tests, and model explainability using Amazon SageMaker. As you advance, you'll understand how you can tackle the challenge of training at scale, including how to use large data sets while saving costs, monitoring training resources to identify bottlenecks, speeding up long training jobs, and tracking multiple models trained for a common goal. Moving ahead, you'll find out how you can integrate Amazon SageMaker with other AWS to build reliable, cost-optimized, and automated machine learning applications. In addition to this, you'll build ML pipelines integrated with MLOps principles and apply best practices to build secure and performant solutions. By the end of the book, you'll confidently be able to apply Amazon SageMaker's wide range of capabilities to the full spectrum of machine learning workflows. What you will learnPerform data bias detection with AWS Data Wrangler and SageMaker ClarifySpeed up data processing with SageMaker Feature StoreOvercome labeling bias with SageMaker Ground TruthImprove training time with the monitoring and profiling capabilities of SageMaker DebuggerAddress the challenge of model deployment automation with CI/CD using the SageMaker model registryExplore SageMaker Neo for model optimizationImplement data and model quality monitoring with Amazon Model MonitorImprove training time and reduce costs with SageMaker data and model parallelismWho this book is for This book is for expert data scientists responsible for building machine learning applications using Amazon SageMaker. Working knowledge of Amazon SageMaker, machine learning, deep learning, and experience using Jupyter Notebooks and Python is expected. Basic knowledge of AWS related to data, security, and monitoring will help you make the most of the book.
Amazon Sagemaker Best Practices
DOWNLOAD
Author : Sireesha Muppala
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-09-24
Amazon Sagemaker Best Practices written by Sireesha Muppala and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-24 with Computers categories.
Overcome advanced challenges in building end-to-end ML solutions by leveraging the capabilities of Amazon SageMaker for developing and integrating ML models into production Key FeaturesLearn best practices for all phases of building machine learning solutions - from data preparation to monitoring models in productionAutomate end-to-end machine learning workflows with Amazon SageMaker and related AWSDesign, architect, and operate machine learning workloads in the AWS CloudBook Description Amazon SageMaker is a fully managed AWS service that provides the ability to build, train, deploy, and monitor machine learning models. The book begins with a high-level overview of Amazon SageMaker capabilities that map to the various phases of the machine learning process to help set the right foundation. You'll learn efficient tactics to address data science challenges such as processing data at scale, data preparation, connecting to big data pipelines, identifying data bias, running A/B tests, and model explainability using Amazon SageMaker. As you advance, you'll understand how you can tackle the challenge of training at scale, including how to use large data sets while saving costs, monitoring training resources to identify bottlenecks, speeding up long training jobs, and tracking multiple models trained for a common goal. Moving ahead, you'll find out how you can integrate Amazon SageMaker with other AWS to build reliable, cost-optimized, and automated machine learning applications. In addition to this, you'll build ML pipelines integrated with MLOps principles and apply best practices to build secure and performant solutions. By the end of the book, you'll confidently be able to apply Amazon SageMaker's wide range of capabilities to the full spectrum of machine learning workflows. What you will learnPerform data bias detection with AWS Data Wrangler and SageMaker ClarifySpeed up data processing with SageMaker Feature StoreOvercome labeling bias with SageMaker Ground TruthImprove training time with the monitoring and profiling capabilities of SageMaker DebuggerAddress the challenge of model deployment automation with CI/CD using the SageMaker model registryExplore SageMaker Neo for model optimizationImplement data and model quality monitoring with Amazon Model MonitorImprove training time and reduce costs with SageMaker data and model parallelismWho this book is for This book is for expert data scientists responsible for building machine learning applications using Amazon SageMaker. Working knowledge of Amazon SageMaker, machine learning, deep learning, and experience using Jupyter Notebooks and Python is expected. Basic knowledge of AWS related to data, security, and monitoring will help you make the most of the book.
Accelerate Deep Learning Workloads With Amazon Sagemaker
DOWNLOAD
Author : Vadim Dabravolski
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-10-28
Accelerate Deep Learning Workloads With Amazon Sagemaker written by Vadim Dabravolski and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-10-28 with Computers categories.
Plan and design model serving infrastructure to run and troubleshoot distributed deep learning training jobs for improved model performance. Key FeaturesExplore key Amazon SageMaker capabilities in the context of deep learningTrain and deploy deep learning models using SageMaker managed capabilities and optimize your deep learning workloadsCover in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMakerBook Description Over the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of practical tasks, underpinning emerging fields such as virtual assistants, autonomous driving, and robotics. In this book, you will learn about the practical aspects of designing, building, and optimizing deep learning workloads on Amazon SageMaker. The book also provides end-to-end implementation examples for popular deep-learning tasks, such as computer vision and natural language processing. You will begin by exploring key Amazon SageMaker capabilities in the context of deep learning. Then, you will explore in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker. You will learn how to train and serve deep learning models using popular open-source frameworks and understand the hardware and software options available for you on Amazon SageMaker. The book also covers various optimizations technique to improve the performance and cost characteristics of your deep learning workloads. By the end of this book, you will be fluent in the software and hardware aspects of running deep learning workloads using Amazon SageMaker. What you will learnCover key capabilities of Amazon SageMaker relevant to deep learning workloadsOrganize SageMaker development environmentPrepare and manage datasets for deep learning trainingDesign, debug, and implement the efficient training of deep learning modelsDeploy, monitor, and optimize the serving of DL modelsWho this book is for This book is relevant for ML engineers who work on deep learning model development and training, and for Solutions Architects who design and optimize end-to-end deep learning workloads. It assumes familiarity with the Python ecosystem, principles of Machine Learning and Deep Learning, and basic knowledge of the AWS cloud.
Getting Started With Amazon Sagemaker Studio
DOWNLOAD
Author : Michael Hsieh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-03-31
Getting Started With Amazon Sagemaker Studio written by Michael Hsieh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-31 with Computers categories.
Build production-grade machine learning models with Amazon SageMaker Studio, the first integrated development environment in the cloud, using real-life machine learning examples and code Key FeaturesUnderstand the ML lifecycle in the cloud and its development on Amazon SageMaker StudioLearn to apply SageMaker features in SageMaker Studio for ML use casesScale and operationalize the ML lifecycle effectively using SageMaker StudioBook Description Amazon SageMaker Studio is the first integrated development environment (IDE) for machine learning (ML) and is designed to integrate ML workflows: data preparation, feature engineering, statistical bias detection, automated machine learning (AutoML), training, hosting, ML explainability, monitoring, and MLOps in one environment. In this book, you'll start by exploring the features available in Amazon SageMaker Studio to analyze data, develop ML models, and productionize models to meet your goals. As you progress, you will learn how these features work together to address common challenges when building ML models in production. After that, you'll understand how to effectively scale and operationalize the ML life cycle using SageMaker Studio. By the end of this book, you'll have learned ML best practices regarding Amazon SageMaker Studio, as well as being able to improve productivity in the ML development life cycle and build and deploy models easily for your ML use cases. What you will learnExplore the ML development life cycle in the cloudUnderstand SageMaker Studio features and the user interfaceBuild a dataset with clicks and host a feature store for MLTrain ML models with ease and scaleCreate ML models and solutions with little codeHost ML models in the cloud with optimal cloud resourcesEnsure optimal model performance with model monitoringApply governance and operational excellence to ML projectsWho this book is for This book is for data scientists and machine learning engineers who are looking to become well-versed with Amazon SageMaker Studio and gain hands-on machine learning experience to handle every step in the ML lifecycle, including building data as well as training and hosting models. Although basic knowledge of machine learning and data science is necessary, no previous knowledge of SageMaker Studio and cloud experience is required.
Aws Certified Machine Learning Engineer Study Guide
DOWNLOAD
Author : Dario Cabianca
language : en
Publisher: John Wiley & Sons
Release Date : 2025-06-17
Aws Certified Machine Learning Engineer Study Guide written by Dario Cabianca and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-17 with Computers categories.
Prepare for the AWS Machine Learning Engineer exam smarter and faster and get job-ready with this efficient and authoritative resource In AWS Certified Machine Learning Engineer Study Guide: Associate (MLA-C01) Exam, veteran AWS Practice Director at Trace3—a leading IT consultancy offering AI, data, cloud and cybersecurity solutions for clients across industries—Dario Cabianca delivers a practical and up-to-date roadmap to preparing for the MLA-C01 exam. You'll learn the skills you need to succeed on the exam as well as those you need to hit the ground running at your first AI-related tech job. You'll learn how to prepare data for machine learning models on Amazon Web Services, build, train, refine models, evaluate model performance, deploy and secure your machine learning applications against bad actors. Inside the book: Complimentary access to the Sybex online test bank, which includes an assessment test, chapter review questions, practice exam, flashcards, and a searchable key term glossary Strategies for selecting and justifying an appropriate machine learning approach for specific business problems and identifying the most efficient AWS solutions for those problems Practical techniques you can implement immediately in an artificial intelligence and machine learning (AI/ML) development or data science role Perfect for everyone preparing for the AWS Certified Machine Learning Engineer -- Associate exam, AWS Certified Machine Learning Engineer Study Guide is also an invaluable resource for those preparing for their first role in AI or data science, as well as junior-level practicing professionals seeking to review the fundamentals with a convenient desk reference.
The Definitive Guide To Machine Learning Operations In Aws
DOWNLOAD
Author : Neel Sendas
language : en
Publisher: Springer Nature
Release Date : 2025-01-03
The Definitive Guide To Machine Learning Operations In Aws written by Neel Sendas and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.
Foreword by Dr. Shreyas Subramanian, Principal Data Scientist, Amazon This book focuses on deploying, testing, monitoring, and automating ML systems in production. It covers AWS MLOps tools like Amazon SageMaker, Data Wrangler, and AWS Feature Store, along with best practices for operating ML systems on AWS. This book explains how to design, develop, and deploy ML workloads at scale using AWS cloud's well-architected pillars. It starts with an introduction to AWS services and MLOps tools, setting up the MLOps environment. It covers operational excellence, including CI/CD pipelines and Infrastructure as code. Security in MLOps, data privacy, IAM, and reliability with automated testing are discussed. Performance efficiency and cost optimization, like Right-sizing ML resources, are explored. The book concludes with MLOps best practices, MLOPS for GenAI, emerging trends, and future developments in MLOps By the end, readers will learn operating ML workloads on the AWS cloud. This book suits software developers, ML engineers, DevOps engineers, architects, and team leaders aspiring to be MLOps professionals on AWS. What you will learn: ● Create repeatable training workflows to accelerate model development ● Catalog ML artifacts centrally for model reproducibility and governance ● Integrate ML workflows with CI/CD pipelines for faster time to production ● Continuously monitor data and models in production to maintain quality ● Optimize model deployment for performance and cost Who this book is for: This book suits ML engineers, DevOps engineers, software developers, architects, and team leaders aspiring to be MLOps professionals on AWS.
Data Engineering Best Practices
DOWNLOAD
Author : Richard J. Schiller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-10-11
Data Engineering Best Practices written by Richard J. Schiller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-11 with Computers categories.
Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines.
Machine Learning Model Serving Patterns And Best Practices
DOWNLOAD
Author : Md Johirul Islam
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-12-30
Machine Learning Model Serving Patterns And Best Practices written by Md Johirul Islam and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-30 with Computers categories.
Become a successful machine learning professional by effortlessly deploying machine learning models to production and implementing cloud-based machine learning models for widespread organizational use Key FeaturesLearn best practices about bringing your models to productionExplore the tools available for serving ML models and the differences between themUnderstand state-of-the-art monitoring approaches for model serving implementationsBook Description Serving patterns enable data science and ML teams to bring their models to production. Most ML models are not deployed for consumers, so ML engineers need to know the critical steps for how to serve an ML model. This book will cover the whole process, from the basic concepts like stateful and stateless serving to the advantages and challenges of each. Batch, real-time, and continuous model serving techniques will also be covered in detail. Later chapters will give detailed examples of keyed prediction techniques and ensemble patterns. Valuable associated technologies like TensorFlow severing, BentoML, and RayServe will also be discussed, making sure that you have a good understanding of the most important methods and techniques in model serving. Later, you'll cover topics such as monitoring and performance optimization, as well as strategies for managing model drift and handling updates and versioning. The book will provide practical guidance and best practices for ensuring that your model serving pipeline is robust, scalable, and reliable. Additionally, this book will explore the use of cloud-based platforms and services for model serving using AWS SageMaker with the help of detailed examples. By the end of this book, you'll be able to save and serve your model using state-of-the-art techniques. What you will learnExplore specific patterns in model serving that are crucial for every data science professionalUnderstand how to serve machine learning models using different techniquesDiscover the various approaches to stateless servingImplement advanced techniques for batch and streaming model servingGet to grips with the fundamental concepts in continued model evaluationServe machine learning models using a fully managed AWS Sagemaker cloud solutionWho this book is for This book is for machine learning engineers and data scientists who want to bring their models into production. Those who are familiar with machine learning and have experience of using machine learning techniques but are looking for options and strategies to bring their models to production will find great value in this book. Working knowledge of Python programming is a must to get started.
Mastering Aws
DOWNLOAD
Author : Edwin Cano
language : en
Publisher: Edwin Cano
Release Date : 2024-11-28
Mastering Aws written by Edwin Cano and has been published by Edwin Cano this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-28 with Computers categories.
The rapid advancements in technology have shifted the landscape of how businesses operate, innovate, and grow. At the center of this transformation is cloud computing—a paradigm that eliminates the constraints of traditional infrastructure, enabling scalability, agility, and cost-efficiency. Amazon Web Services (AWS) has emerged as the leading cloud provider, offering a comprehensive suite of services that power startups, enterprises, and governments worldwide. This book, Mastering AWS, serves as a gateway to understanding and utilizing AWS to its full potential. Whether you’re a professional aiming to enhance your technical skills, a business leader seeking to drive innovation, or a student exploring the possibilities of cloud computing, this book is crafted to guide you step-by-step through the AWS ecosystem. Why AWS? AWS is a pioneer in the cloud computing space, providing an unmatched array of services for compute, storage, databases, machine learning, IoT, and much more. Its global infrastructure ensures reliability, while its pay-as-you-go pricing model makes it accessible to organizations of all sizes. AWS has become synonymous with innovation, enabling companies to experiment, iterate, and succeed faster than ever before. What Will You Learn? This book covers a wide range of topics, including: The fundamental concepts of cloud computing and AWS architecture. Setting up and managing your AWS account securely and efficiently. Deploying scalable applications using services like EC2, Lambda, and Elastic Beanstalk. Harnessing data with storage solutions such as S3, RDS, and DynamoDB. Advanced topics like AI/ML with SageMaker, IoT solutions, and DevOps practices. Cost management strategies and real-world use cases to maximize the value of AWS. Who Is This Book For? This book is designed for readers at all skill levels: Beginners will appreciate the step-by-step explanations and foundational concepts. Intermediate users will gain insights into best practices, cost optimization, and advanced features. Experts will find value in the comprehensive coverage of AWS services and practical examples. How to Use This Book The chapters are structured to provide a logical progression from basics to advanced topics. Each chapter includes practical examples, hands-on exercises, and tips to help you apply the concepts effectively. You can read the book sequentially or jump to specific sections based on your interests and needs. A Journey to Mastery Mastering AWS is not just about learning how to use its services; it’s about understanding how to leverage the cloud to solve challenges, innovate faster, and achieve your goals. By the end of this book, you’ll have the knowledge and confidence to harness AWS for any project or initiative, whether you're launching a startup, optimizing enterprise operations, or exploring cutting-edge technologies. Let’s begin this exciting journey into the world of AWS, where the only limit is your imagination.
Aws Certified Ai Practitioner A Business Professional S Guide
DOWNLOAD
Author : Vladimir Provorov
language : en
Publisher: Cloud City Press
Release Date : 2025-04-27
Aws Certified Ai Practitioner A Business Professional S Guide written by Vladimir Provorov and has been published by Cloud City Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-27 with Computers categories.
AWS Certified AI Practitioner: A Business Professional's Guide An exam study guide for AWS exam AIF-C01 Second Edition (April 2025) Unlock the Power of AI on AWS – For Business Professionals Are you a business analyst, project manager, or IT professional looking to harness the potential of AI in your organization? Do you need to understand AI/ML capabilities on AWS without diving deep into the technical implementation? This comprehensive study guide is your key to mastering the AWS Certified AI Practitioner exam (AIF-C01) and advancing your career in the AI-driven business landscape. What You'll Learn: Fundamental concepts of AI, ML, and generative AI in business contexts How to identify and evaluate AI opportunities within your organization Best practices for implementing and managing AI projects on AWS Essential AWS AI services and their business applications Strategies for ensuring responsible and ethical AI development Exam Preparation: All domains and topics of the AWS Certified AI Practitioner exam 70 practice questions and detailed answers for self-assessment and exam readiness Real-world scenarios to test your understanding of AI concepts in business settings Dozens of diagrams, summary tables, and hundreds of links for further reading Perfect for: Business analysts and IT support professionals Marketing and sales professionals Product and project managers Line-of-business and IT managers Written by an experienced AWS Solutions Architect, this unofficial guide translates complex AI concepts into easy-to-understand language for non-technical professionals. With real-world examples, practice questions, and actionable insights, you'll gain the confidence to contribute effectively to AI initiatives and make informed decisions about AI technologies. Prepare for the AWS Certified AI Practitioner exam and position yourself as a valuable asset in the AI revolution. Start your journey to becoming an AI-savvy business professional today!