An Introduction To Infinite Dimensional Differential Geometry

DOWNLOAD
Download An Introduction To Infinite Dimensional Differential Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Infinite Dimensional Differential Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An Introduction To Infinite Dimensional Differential Geometry
DOWNLOAD
Author : Alexander Schmeding
language : en
Publisher: Cambridge University Press
Release Date : 2022-12-22
An Introduction To Infinite Dimensional Differential Geometry written by Alexander Schmeding and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-22 with Mathematics categories.
Introduces foundational concepts in infinite-dimensional differential geometry beyond Banach manifolds, showcasing its modern applications.
Fundamentals Of Differential Geometry
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Fundamentals Of Differential Geometry written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.
The Convenient Setting Of Global Analysis
DOWNLOAD
Author : Andreas Kriegl
language : en
Publisher: American Mathematical Soc.
Release Date : 1997
The Convenient Setting Of Global Analysis written by Andreas Kriegl and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Mathematics categories.
For graduate students and research mathematicians interested in global analysis and the analysis of manifolds, lays the foundations for a differential calculus in infinite dimensions and discusses applications in infinite-dimension differential geometry and global analysis not involving Sobolev completions and fixed-point theory. Shows how the notion of smoothness as mapping smooth curves to smooth curves coincides with all known reasonable concepts up to Frechet spaces. Then develops a calculus of holomorphic mappings, and another of real analytical mapping. Emphasizes regular infinite dimensional Lie groups. Annotation copyrighted by Book News, Inc., Portland, OR
Dynamics In Infinite Dimensions
DOWNLOAD
Author : Jack K. Hale
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18
Dynamics In Infinite Dimensions written by Jack K. Hale and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.
State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications
Functional Analysis And Infinite Dimensional Geometry
DOWNLOAD
Author : Marian Fabian
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Functional Analysis And Infinite Dimensional Geometry written by Marian Fabian and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.
Introduction To Differential Geometry
DOWNLOAD
Author : Joel W. Robbin
language : en
Publisher: Springer Nature
Release Date : 2022-01-12
Introduction To Differential Geometry written by Joel W. Robbin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-12 with Mathematics categories.
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Differential And Riemannian Manifolds
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 1995-03-09
Differential And Riemannian Manifolds written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-03-09 with Mathematics categories.
This is the third version of a book on Differential Manifolds; in this latest expansion three chapters have been added on Riemannian and pseudo-Riemannian geometry, and the section on sprays and Stokes' theorem have been rewritten. This text provides an introduction to basic concepts in differential topology, differential geometry and differential equations. In differential topology one studies classes of maps and the possibility of finding differentiable maps in them, and one uses differentiable structures on manifolds to determine their topological structure. In differential geometry one adds structures to the manifold (vector fields, sprays, a metric, and so forth) and studies their properties. In differential equations one studies vector fields and their integral curves, singular points, stable and unstable manifolds, and the like.
Lecture Notes On Geometrical Aspects Of Partial Differential Equations
DOWNLOAD
Author : Viktor Viktorovich Zharinov
language : en
Publisher: World Scientific
Release Date : 1992
Lecture Notes On Geometrical Aspects Of Partial Differential Equations written by Viktor Viktorovich Zharinov and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 1992 with Mathematics categories.
This book focuses on the properties of nonlinear systems of PDE with geometrical origin and the natural description in the language of infinite-dimensional differential geometry. The treatment is very informal and the theory is illustrated by various examples from mathematical physics. All necessary information about the infinite-dimensional geometry is given in the text.
Differential Geometry For Physicists
DOWNLOAD
Author : Bo-yu Hou
language : en
Publisher: World Scientific Publishing Company
Release Date : 1997-10-31
Differential Geometry For Physicists written by Bo-yu Hou and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-10-31 with Science categories.
This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.
Modern Differential Geometry For Physicists
DOWNLOAD
Author : Chris J. Isham
language : en
Publisher: Allied Publishers
Release Date : 2002
Modern Differential Geometry For Physicists written by Chris J. Isham and has been published by Allied Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Geometry, Differential categories.