An Introduction To Nonparametric Statistics

DOWNLOAD
Download An Introduction To Nonparametric Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Nonparametric Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Nonparametric Statistics
DOWNLOAD
Author : JOHN E. KOLASSA
language : en
Publisher:
Release Date : 2022
Introduction To Nonparametric Statistics written by JOHN E. KOLASSA and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.
Introduction To Nonparametric Statistics For The Biological Sciences Using R
DOWNLOAD
Author : Thomas W. MacFarland
language : en
Publisher: Springer
Release Date : 2016-07-06
Introduction To Nonparametric Statistics For The Biological Sciences Using R written by Thomas W. MacFarland and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-06 with Medical categories.
This book contains a rich set of tools for nonparametric analyses, and the purpose of this text is to provide guidance to students and professional researchers on how R is used for nonparametric data analysis in the biological sciences: To introduce when nonparametric approaches to data analysis are appropriate To introduce the leading nonparametric tests commonly used in biostatistics and how R is used to generate appropriate statistics for each test To introduce common figures typically associated with nonparametric data analysis and how R is used to generate appropriate figures in support of each data set The book focuses on how R is used to distinguish between data that could be classified as nonparametric as opposed to data that could be classified as parametric, with both approaches to data classification covered extensively. Following an introductory lesson on nonparametric statistics for the biological sciences, the book is organized into eight self-contained lessons on various analyses and tests using R to broadly compare differences between data sets and statistical approach.
All Of Nonparametric Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-10
All Of Nonparametric Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-10 with Mathematics categories.
There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master’s-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master’s-level students. For Ph. D.
Introduction To Nonparametric Estimation
DOWNLOAD
Author : Alexandre B. Tsybakov
language : en
Publisher: Springer
Release Date : 2010-11-29
Introduction To Nonparametric Estimation written by Alexandre B. Tsybakov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-29 with Mathematics categories.
Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Nonparametric Statistics For Non Statisticians
DOWNLOAD
Author : Gregory W. Corder
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20
Nonparametric Statistics For Non Statisticians written by Gregory W. Corder and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Mathematics categories.
A practical and understandable approach to nonparametric statistics for researchers across diverse areas of study As the importance of nonparametric methods in modern statistics continues to grow, these techniques are being increasingly applied to experimental designs across various fields of study. However, researchers are not always properly equipped with the knowledge to correctly apply these methods. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach fills a void in the current literature by addressing nonparametric statistics in a manner that is easily accessible for readers with a background in the social, behavioral, biological, and physical sciences. Each chapter follows the same comprehensive format, beginning with a general introduction to the particular topic and a list of main learning objectives. A nonparametric procedure is then presented and accompanied by context-based examples that are outlined in a step-by-step fashion. Next, SPSS® screen captures are used to demonstrate how to perform and recognize the steps in the various procedures. Finally, the authors identify and briefly describe actual examples of corresponding nonparametric tests from diverse fields. Using this organized structure, the book outlines essential skills for the application of nonparametric statistical methods, including how to: Test data for normality and randomness Use the Wilcoxon signed rank test to compare two related samples Apply the Mann-Whitney U test to compare two unrelated samples Compare more than two related samples using the Friedman test Employ the Kruskal-Wallis H test to compare more than two unrelated samples Compare variables of ordinal or dichotomous scales Test for nominal scale data A detailed appendix provides guidance on inputting and analyzing the presented data using SPSS®, and supplemental tables of critical values are provided. In addition, the book's FTP site houses supplemental data sets and solutions for further practice. Extensively classroom tested, Nonparametric Statistics for Non-Statisticians is an ideal book for courses on nonparametric statistics at the upper-undergraduate and graduate levels. It is also an excellent reference for professionals and researchers in the social, behavioral, and health sciences who seek a review of nonparametric methods and relevant applications.
Nonparametric Statistics
DOWNLOAD
Author : Gregory W. Corder
language : en
Publisher: John Wiley & Sons
Release Date : 2014-05-12
Nonparametric Statistics written by Gregory W. Corder and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Mathematics categories.
“...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.
Theory Of Nonparametric Tests
DOWNLOAD
Author : Thorsten Dickhaus
language : en
Publisher: Springer
Release Date : 2018-03-27
Theory Of Nonparametric Tests written by Thorsten Dickhaus and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-27 with Mathematics categories.
This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.
Nonparametric Statistical Methods
DOWNLOAD
Author : Myles Hollander
language : en
Publisher: John Wiley & Sons
Release Date : 2013-11-25
Nonparametric Statistical Methods written by Myles Hollander and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-25 with Mathematics categories.
Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.
An Introduction To Modern Nonparametric Statistics
DOWNLOAD
Author : James J. Higgins
language : en
Publisher: Duxbury Resource Center
Release Date : 2004
An Introduction To Modern Nonparametric Statistics written by James J. Higgins and has been published by Duxbury Resource Center this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Nonparametric statistics categories.
Guided by problems that frequently arise in actual practice, James Higgins' book presents a wide array of nonparametric methods of data analysis that researchers will find useful. It discusses a variety of nonparametric methods and, wherever possible, stresses the connection between methods. For instance, rank tests are introduced as special cases of permutation tests applied to ranks. The author provides coverage of topics not often found in nonparametric textbooks, including procedures for multivariate data, multiple regression, multi-factor analysis of variance, survival data, and curve smoothing. This truly modern approach teaches non-majors how to analyze and interpret data with nonparametric procedures using today's computing technology.
Introduction To Nonparametric Regression
DOWNLOAD
Author : K. Takezawa
language : en
Publisher: John Wiley & Sons
Release Date : 2005-12-02
Introduction To Nonparametric Regression written by K. Takezawa and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-02 with Mathematics categories.
An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features: * Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods * Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions * Mathematical equations that are accompanied by a clear explanation of how the equation was derived The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts. With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics. This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.