An Introduction To The Numerical Simulation Of Stochastic Di Erential Equations

DOWNLOAD
Download An Introduction To The Numerical Simulation Of Stochastic Di Erential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To The Numerical Simulation Of Stochastic Di Erential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
An Introduction To The Numerical Simulation Of Stochastic Di Erential Equations
DOWNLOAD
Author : Desmond J. Higham
language : en
Publisher: SIAM
Release Date : 2021-01-28
An Introduction To The Numerical Simulation Of Stochastic Di Erential Equations written by Desmond J. Higham and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-28 with Mathematics categories.
This book provides a lively and accessible introduction to the numerical solution of stochastic differential equations with the aim of making this subject available to the widest possible readership. It presents an outline of the underlying convergence and stability theory while avoiding technical details. Key ideas are illustrated with numerous computational examples and computer code is listed at the end of each chapter. The authors include 150 exercises, with solutions available online, and 40 programming tasks. Although introductory, the book covers a range of modern research topics, including Itô versus Stratonovich calculus, implicit methods, stability theory, nonconvergence on nonlinear problems, multilevel Monte Carlo, approximation of double stochastic integrals, and tau leaping for chemical and biochemical reaction networks. An Introduction to the Numerical Simulation of Stochastic Differential Equations is appropriate for undergraduates and postgraduates in mathematics, engineering, physics, chemistry, finance, and related disciplines, as well as researchers in these areas. The material assumes only a competence in algebra and calculus at the level reached by a typical first-year undergraduate mathematics class, and prerequisites are kept to a minimum. Some familiarity with basic concepts from numerical analysis and probability is also desirable but not necessary.
Numerical Solution Of Stochastic Differential Equations
DOWNLOAD
Author : Peter E. Kloeden
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Numerical Solution Of Stochastic Differential Equations written by Peter E. Kloeden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Mathematics categories.
The aim of this book is to provide an accessible introduction to stochastic differ ential equations and their applications together with a systematic presentation of methods available for their numerical solution. During the past decade there has been an accelerating interest in the de velopment of numerical methods for stochastic differential equations (SDEs). This activity has been as strong in the engineering and physical sciences as it has in mathematics, resulting inevitably in some duplication of effort due to an unfamiliarity with the developments in other disciplines. Much of the reported work has been motivated by the need to solve particular types of problems, for which, even more so than in the deterministic context, specific methods are required. The treatment has often been heuristic and ad hoc in character. Nevertheless, there are underlying principles present in many of the papers, an understanding of which will enable one to develop or apply appropriate numerical schemes for particular problems or classes of problems.
Numerical Solution Of Sde Through Computer Experiments
DOWNLOAD
Author : Peter Eris Kloeden
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Numerical Solution Of Sde Through Computer Experiments written by Peter Eris Kloeden and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The numerical solution of stochastic differential equations is becoming an in dispensible worktool in a multitude of disciplines, bridging a long-standing gap between the well advanced theory of stochastic differential equations and its application to specific examples. This has been made possible by the much greater accessibility to high-powered computers at low-cost combined with the availability of new, effective higher order numerical schemes for stochastic dif ferential equations. Many hitherto intractable problems can now be tackled successfully and more realistic modelling with stochastic differential equations undertaken. The aim of this book is to provide a computationally oriented introduction to the numerical solution of stochastic differential equations, using computer experiments to develop in the readers an ability to undertake numerical studies of stochastic differential equations that arise in their own disciplines and an understanding, intuitive at least, of the necessary theoretical background. It is related to, but can also be used independently of the monograph P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics Series Vol. 23, Springer-Verlag, Hei delberg, 1992, which is more theoretical, presenting a systematic treatment of time-discretized numerical schemes for stochastic differential equations along with background material on probability and stochastic calculus. To facilitate the parallel use of both books, the presentation of material in this book follows that in the monograph closely.
Applied Stochastic Differential Equations
DOWNLOAD
Author : Simo Särkkä
language : en
Publisher: Cambridge University Press
Release Date : 2019-05-02
Applied Stochastic Differential Equations written by Simo Särkkä and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-02 with Business & Economics categories.
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
An Introduction To Stochastic Differential Equations
DOWNLOAD
Author : Lawrence C. Evans
language : en
Publisher: American Mathematical Soc.
Release Date : 2012-12-11
An Introduction To Stochastic Differential Equations written by Lawrence C. Evans and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-11 with Mathematics categories.
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Numerical Solution Of Stochastic Differential Equations With Jumps In Finance
DOWNLOAD
Author : Eckhard Platen
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-07-23
Numerical Solution Of Stochastic Differential Equations With Jumps In Finance written by Eckhard Platen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-23 with Mathematics categories.
In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics.
From Elementary Probability To Stochastic Differential Equations With Maple
DOWNLOAD
Author : Sasha Cyganowski
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
From Elementary Probability To Stochastic Differential Equations With Maple written by Sasha Cyganowski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This is an introduction to probabilistic and statistical concepts necessary to understand the basic ideas and methods of stochastic differential equations. Based on measure theory, which is introduced as smoothly as possible, it provides practical skills in the use of MAPLE in the context of probability and its applications. It offers to graduates and advanced undergraduates an overview and intuitive background for more advanced studies.
Stochastic Numerical Methods
DOWNLOAD
Author : Raúl Toral
language : en
Publisher: John Wiley & Sons
Release Date : 2014-08-25
Stochastic Numerical Methods written by Raúl Toral and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-25 with Science categories.
Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability Concepts Monte Carlo Integration Generation of Uniform and Non-uniform Random Numbers: Non-correlated Values Dynamical Methods Applications to Statistical Mechanics Introduction to Stochastic Processes Numerical Simulation of Ordinary and Partial Stochastic Differential Equations Introduction to Master Equations Numerical Simulations of Master Equations Hybrid Monte Carlo Generation of n-Dimensional Correlated Gaussian Variables Collective Algorithms for Spin Systems Histogram Extrapolation Multicanonical Simulations
Petsc For Partial Differential Equations Numerical Solutions In C And Python
DOWNLOAD
Author : Ed Bueler
language : en
Publisher: SIAM
Release Date : 2020-10-22
Petsc For Partial Differential Equations Numerical Solutions In C And Python written by Ed Bueler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.