Analysis And Numerics Of Partial Differential Equations

DOWNLOAD
Download Analysis And Numerics Of Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis And Numerics Of Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Numerical Partial Differential Equations Finite Difference Methods
DOWNLOAD
Author : J.W. Thomas
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-12-01
Numerical Partial Differential Equations Finite Difference Methods written by J.W. Thomas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-01 with Mathematics categories.
This text will be divided into two books which cover the topic of numerical partial differential equations. Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student, this text offers a means of coming out of a course with a large number of methods which provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation.
Analytic Methods For Partial Differential Equations
DOWNLOAD
Author : G. Evans
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Analytic Methods For Partial Differential Equations written by G. Evans and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.
Numerical Analysis Of Partial Differential Equations
DOWNLOAD
Author : S. H, Lui
language : en
Publisher: John Wiley & Sons
Release Date : 2012-01-10
Numerical Analysis Of Partial Differential Equations written by S. H, Lui and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-10 with Mathematics categories.
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.
Numerical Approximation Of Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-11
Numerical Approximation Of Partial Differential Equations written by Alfio Quarteroni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-11 with Mathematics categories.
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Numerical Methods For Nonlinear Partial Differential Equations
DOWNLOAD
Author : Sören Bartels
language : en
Publisher: Springer
Release Date : 2015-01-19
Numerical Methods For Nonlinear Partial Differential Equations written by Sören Bartels and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-19 with Mathematics categories.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Partial Differential Equations With Numerical Methods
DOWNLOAD
Author : Stig Larsson
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-05
Partial Differential Equations With Numerical Methods written by Stig Larsson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-05 with Mathematics categories.
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.
Partial Differential Equations
DOWNLOAD
Author : Mark S. Gockenbach
language : en
Publisher: SIAM
Release Date : 2005-01-01
Partial Differential Equations written by Mark S. Gockenbach and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-01 with Mathematics categories.
Partial differential equations (PDEs) are essential for modeling many physical phenomena. This undergraduate textbook introduces students to the topic with a unique approach that emphasizes the modern finite element method alongside the classical method of Fourier analysis.
Numerical Methods For Elliptic And Parabolic Partial Differential Equations
DOWNLOAD
Author : Peter Knabner
language : en
Publisher: Springer Science & Business Media
Release Date : 2003-06-26
Numerical Methods For Elliptic And Parabolic Partial Differential Equations written by Peter Knabner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-26 with Mathematics categories.
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Numerical Partial Differential Equations For Environmental Scientists And Engineers
DOWNLOAD
Author : Daniel R. Lynch
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-12-15
Numerical Partial Differential Equations For Environmental Scientists And Engineers written by Daniel R. Lynch and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-15 with Science categories.
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.
Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Vitoriano Ruas
language : en
Publisher: John Wiley & Sons
Release Date : 2016-04-28
Numerical Methods For Partial Differential Equations written by Vitoriano Ruas and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-28 with Technology & Engineering categories.
Numerical Methods for Partial Differential Equations: An Introduction Vitoriano Ruas, Sorbonne Universités, UPMC - Université Paris 6, France A comprehensive overview of techniques for the computational solution of PDE's Numerical Methods for Partial Differential Equations: An Introduction covers the three most popular methods for solving partial differential equations: the finite difference method, the finite element method and the finite volume method. The book combines clear descriptions of the three methods, their reliability, and practical implementation aspects. Justifications for why numerical methods for the main classes of PDE's work or not, or how well they work, are supplied and exemplified. Aimed primarily at students of Engineering, Mathematics, Computer Science, Physics and Chemistry among others this book offers a substantial insight into the principles numerical methods in this class of problems are based upon. The book can also be used as a reference for research work on numerical methods for PDE’s. Key features: A balanced emphasis is given to both practical considerations and a rigorous mathematical treatment The reliability analyses for the three methods are carried out in a unified framework and in a structured and visible manner, for the basic types of PDE's Special attention is given to low order methods, as practitioner's overwhelming default options for everyday use New techniques are employed to derive known results, thereby simplifying their proof Supplementary material is available from a companion website.