Numerical Methods For Nonlinear Partial Differential Equations

DOWNLOAD
Download Numerical Methods For Nonlinear Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Numerical Methods For Nonlinear Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Numerical Methods For Nonlinear Partial Differential Equations
DOWNLOAD
Author : Sören Bartels
language : en
Publisher: Springer
Release Date : 2015-01-19
Numerical Methods For Nonlinear Partial Differential Equations written by Sören Bartels and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-19 with Mathematics categories.
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Order Structure And Topological Methods In Nonlinear Partial Differential Equations
DOWNLOAD
Author : Yihong Du
language : en
Publisher: World Scientific
Release Date : 2006
Order Structure And Topological Methods In Nonlinear Partial Differential Equations written by Yihong Du and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems. The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time. Sample Chapter(s). Chapter 1: Krein-Rutman Theorem and the Principal Eigenvalue (128 KB). Contents: KreinOCoRutman Theorem and the Principal Eigenvalue; Maximum Principles Revisited; The Moving Plane Method; The Method of Upper and Lower Solutions; The Logistic Equation; Boundary Blow-Up Problems; Symmetry and Liouville Type Results Over Half and Entire Spaces. Readership: Researchers and postgraduate students in partial differential equations."
Numerical Solutions Of Partial Differential Equations
DOWNLOAD
Author : Silvia Bertoluzza
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-13
Numerical Solutions Of Partial Differential Equations written by Silvia Bertoluzza and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-13 with Mathematics categories.
This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.
Petsc For Partial Differential Equations Numerical Solutions In C And Python
DOWNLOAD
Author : Ed Bueler
language : en
Publisher: SIAM
Release Date : 2020-10-22
Petsc For Partial Differential Equations Numerical Solutions In C And Python written by Ed Bueler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-22 with Mathematics categories.
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.
Solving Nonlinear Partial Differential Equations With Maple And Mathematica
DOWNLOAD
Author : Inna Shingareva
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-07-24
Solving Nonlinear Partial Differential Equations With Maple And Mathematica written by Inna Shingareva and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-07-24 with Mathematics categories.
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Numerical Methods For Nonlinear Engineering Models
DOWNLOAD
Author : John R. Hauser
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-24
Numerical Methods For Nonlinear Engineering Models written by John R. Hauser and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-24 with Technology & Engineering categories.
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.
Numerical Analysis Of Partial Differential Equations
DOWNLOAD
Author : S. H, Lui
language : en
Publisher: John Wiley & Sons
Release Date : 2011-08-30
Numerical Analysis Of Partial Differential Equations written by S. H, Lui and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-30 with Mathematics categories.
A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.
Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Sandip Mazumder
language : en
Publisher: Academic Press
Release Date : 2015-12-01
Numerical Methods For Partial Differential Equations written by Sandip Mazumder and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-01 with Mathematics categories.
Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives
Mathematical And Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Joël Chaskalovic
language : en
Publisher: Springer
Release Date : 2014-05-16
Mathematical And Numerical Methods For Partial Differential Equations written by Joël Chaskalovic and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-16 with Mathematics categories.
This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.