Analysis Of Categorical Data With R

DOWNLOAD
Download Analysis Of Categorical Data With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis Of Categorical Data With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Discrete Data Analysis With R
DOWNLOAD
Author : Michael Friendly
language : en
Publisher: CRC Press
Release Date : 2015-12-16
Discrete Data Analysis With R written by Michael Friendly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-16 with Mathematics categories.
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Analysis Of Categorical Data With R
DOWNLOAD
Author : Christopher R. Bilder
language : en
Publisher: CRC Press
Release Date : 2014-08-11
Analysis Of Categorical Data With R written by Christopher R. Bilder and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-11 with Mathematics categories.
Learn How to Properly Analyze Categorical DataAnalysis of Categorical Data with R presents a modern account of categorical data analysis using the popular R software. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability est
An Introduction To Data Analysis In R
DOWNLOAD
Author : Alfonso Zamora Saiz
language : en
Publisher: Springer Nature
Release Date : 2020-07-27
An Introduction To Data Analysis In R written by Alfonso Zamora Saiz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-27 with Computers categories.
This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R. The chapters cover topics such as the fundamentals of programming in R, data collection and preprocessing, including web scraping, data visualization, and statistical methods, including multivariate analysis, and feature exercises at the end of each section. The text requires only basic statistics skills, as it strikes a balance between statistical and mathematical understanding and implementation in R, with a special emphasis on reproducible examples and real-world applications. This textbook is primarily intended for undergraduate students of mathematics, statistics, physics, economics, finance and business who are pursuing a career in data analytics. It will be equally valuable for master students of data science and industry professionals who want to conduct data analyses.
Graphical Data Analysis With R
DOWNLOAD
Author : Antony Unwin
language : en
Publisher: CRC Press
Release Date : 2018-09-03
Graphical Data Analysis With R written by Antony Unwin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Mathematics categories.
See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.
Data Analysis And Graphics Using R
DOWNLOAD
Author : John Maindonald
language : en
Publisher: Cambridge University Press
Release Date : 2010-05-06
Data Analysis And Graphics Using R written by John Maindonald and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-06 with Computers categories.
Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.
R Data Analysis Without Programming
DOWNLOAD
Author : David W. Gerbing
language : en
Publisher: Taylor & Francis
Release Date : 2023-01-30
R Data Analysis Without Programming written by David W. Gerbing and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-30 with Psychology categories.
The new edition of this innovative book, R Data Analysis without Programming, prepares the readers to quickly analyze data and interpret statistical results using R. Professor Gerbing has developed lessR, a ground-breaking method in alleviating the challenges of R programming. The lessR extends R, removing the need for programming. This edition expands upon the first edition’s introduction to R through lessR, which enables the readers to learn how to organize data for analysis, read the data into R, and generate output without performing numerous functions and programming exercises first. With lessR, readers can select the necessary procedure and change the relevant variables with simple function calls. The text reviews and explains basic statistical procedures with the lessR enhancements added to the standard R environment. Using lessR, data analysis with R becomes immediately accessible to the novice user and easier to use for the experienced user. Highlights along with content new to this edition include: Explanation and Interpretation of all data analysis techniques; much more than a computer manual, this book shows the reader how to explain and interpret the results. Introduces the concepts and commands reviewed in each chapter. Clear, relaxed writing style more effectively communicates the underlying concepts than more stilted academic writing. Extensive margin notes highlight, define, illustrate, and cross-reference the key concepts. When readers encounter a term previously discussed, the margin notes identify the page number for the initial introduction. Scenarios that highlight the use of a specific analysis followed by the corresponding R/lessR input, output, and an interpretation of the results. Numerous examples of output from psychology, business, education, and other social sciences, that demonstrate the analysis and how to interpret results. Two data sets are analyzed multiple times in the book, provide continuity throughout. Comprehensive: A wide range of data analysis techniques are presented throughout the book. Integration with machine learning as regression analysis is presented from both the traditional perspective and from the modern machine learning perspective. End of chapter problems help readers test their understanding of the concepts. A website at www.lessRstats.com that features the data sets referenced in both standard text and SPSS formats so readers can practice using R/lessR by working through the text examples and worked problems, R/lessR videos to help readers better understand the program, and more. This book is ideal for graduate and undergraduate courses in statistics beyond the introductory course, research methods, and/or any data analysis course, taught in departments of psychology, business, education, and other social and health sciences; this book is also appreciated by researchers doing data analysis. Prerequisites include basic statistical knowledge, though the concepts are explained from the beginning in the book. Previous knowledge of R is not assumed.
Beginner S Guide For Data Analysis Using R Programming
DOWNLOAD
Author : Jeeva Jose
language : en
Publisher: KHANNA PUBLISHING HOUSE
Release Date :
Beginner S Guide For Data Analysis Using R Programming written by Jeeva Jose and has been published by KHANNA PUBLISHING HOUSE this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
R programming is an efficient tool for statistical analysis of data. Data science has become critical to each field and the popularity of R is skyrocketing. Organization as large and diverse as Google, Facebook, Microsoft, Bank of America, Ford Motor Company, Mozilla, Thomas Cook, The New York Times, The National Weather Service, Twitter, ANZ Bank, Uber, Airbnb etc . have turned to R for reporting, analyzing and visualization of data, this book is for students and professionals of Mathematics, Statistics, Physics, Chemistry, Biology, Social Science and Medicine, Business, Engineering, Software, Information Technology, Sales, Bio Informatics, Pharmacy and any one, where data needs to be analyzed and represented graphically.
Analyzing Health Data In R For Sas Users
DOWNLOAD
Author : Monika Maya Wahi
language : en
Publisher: CRC Press
Release Date : 2017-11-22
Analyzing Health Data In R For Sas Users written by Monika Maya Wahi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Mathematics categories.
Analyzing Health Data in R for SAS Users is aimed at helping health data analysts who use SAS accomplish some of the same tasks in R. It is targeted to public health students and professionals who have a background in biostatistics and SAS software, but are new to R. For professors, it is useful as a textbook for a descriptive or regression modeling class, as it uses a publicly-available dataset for examples, and provides exercises at the end of each chapter. For students and public health professionals, not only is it a gentle introduction to R, but it can serve as a guide to developing the results for a research report using R software. Features: Gives examples in both SAS and R Demonstrates descriptive statistics as well as linear and logistic regression Provides exercise questions and answers at the end of each chapter Uses examples from the publicly available dataset, Behavioral Risk Factor Surveillance System (BRFSS) 2014 data Guides the reader on producing a health analysis that could be published as a research report Gives an example of hypothesis-driven data analysis Provides examples of plots with a color insert
Behavioral Data Analysis With R And Python
DOWNLOAD
Author : Florent Buisson
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-06-15
Behavioral Data Analysis With R And Python written by Florent Buisson and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-15 with Business & Economics categories.
Harness the full power of the behavioral data in your company by learning tools specifically designed for behavioral data analysis. Common data science algorithms and predictive analytics tools treat customer behavioral data, such as clicks on a website or purchases in a supermarket, the same as any other data. Instead, this practical guide introduces powerful methods specifically tailored for behavioral data analysis. Advanced experimental design helps you get the most out of your A/B tests, while causal diagrams allow you to tease out the causes of behaviors even when you can't run experiments. Written in an accessible style for data scientists, business analysts, and behavioral scientists, thispractical book provides complete examples and exercises in R and Python to help you gain more insight from your data--immediately. Understand the specifics of behavioral data Explore the differences between measurement and prediction Learn how to clean and prepare behavioral data Design and analyze experiments to drive optimal business decisions Use behavioral data to understand and measure cause and effect Segment customers in a transparent and insightful way
Discrete Choice Analysis With R
DOWNLOAD
Author : Antonio Páez
language : en
Publisher: Springer Nature
Release Date : 2023-01-25
Discrete Choice Analysis With R written by Antonio Páez and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-25 with Mathematics categories.
This book is designed as a gentle introduction to the fascinating field of choice modeling and its practical implementation using the R language. Discrete choice analysis is a family of methods useful to study individual decision-making. With strong theoretical foundations in consumer behavior, discrete choice models are used in the analysis of health policy, transportation systems, marketing, economics, public policy, political science, urban planning, and criminology, to mention just a few fields of application. The book does not assume prior knowledge of discrete choice analysis or R, but instead strives to introduce both in an intuitive way, starting from simple concepts and progressing to more sophisticated ideas. Loaded with a wealth of examples and code, the book covers the fundamentals of data and analysis in a progressive way. Readers begin with simple data operations and the underlying theory of choice analysis and conclude by working with sophisticated models including latent class logit models, mixed logit models, and ordinal logit models with taste heterogeneity. Data visualization is emphasized to explore both the input data as well as the results of models. This book should be of interest to graduate students, faculty, and researchers conducting empirical work using individual level choice data who are approaching the field of discrete choice analysis for the first time. In addition, it should interest more advanced modelers wishing to learn about the potential of R for discrete choice analysis. By embedding the treatment of choice modeling within the R ecosystem, readers benefit from learning about the larger R family of packages for data exploration, analysis, and visualization.