Discrete Data Analysis With R

DOWNLOAD
Download Discrete Data Analysis With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Data Analysis With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Discrete Data Analysis With R
DOWNLOAD
Author : Michael Friendly
language : en
Publisher: CRC Press
Release Date : 2015-12-16
Discrete Data Analysis With R written by Michael Friendly and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-16 with Mathematics categories.
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Graphical Data Analysis With R
DOWNLOAD
Author : Antony Unwin
language : en
Publisher: CRC Press
Release Date : 2015-03-25
Graphical Data Analysis With R written by Antony Unwin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-25 with Mathematics categories.
See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.
Scientific Data Analysis With R
DOWNLOAD
Author : Azizur Rahman
language : en
Publisher: CRC Press
Release Date : 2024-11-28
Scientific Data Analysis With R written by Azizur Rahman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-28 with Mathematics categories.
In an era marked by exponential growth in data generation and an unprecedented convergence of technology and healthcare, the intersection of biostatistics and data science has become a pivotal domain. This book is the ideal companion in navigating the convergence of statistical methodologies and data science techniques with diverse applications implemented in the open-source environment of R. It is designed to be a comprehensive guide, marrying the principles of biostatistics with the practical implementation of statistics and data science in R, thereby empowering learners, researchers, and practitioners with the tools necessary to extract meaningful knowledge from biological, health, and medical datasets. This book is intended for students, researchers, and professionals eager to harness the combined power of biostatistics, data science, and the R programming language while gathering vital statistical knowledge needed for cutting-edge scientists in all fields. It is useful for those seeking to understand the basics of data science and statistical analysis, or looking to enhance their skills in handling any simple or complex data including biological, health, medical, and industry data. Key Features: Presents contemporary concepts of data science and biostatistics with real-life data analysis examples Promotes the evolution of fundamental and advanced methods applying to real-life problem-solving cases Explores computational statistical data science techniques from initial conception to recent developments of biostatistics Provides all R codes and real-world datasets to practice and competently apply into reader’s own domains Written in an exclusive state-of-the-art deductive approach without any theoretical hitches to support all contemporary readers
Data Visualisation With R
DOWNLOAD
Author : Thomas Rahlf
language : en
Publisher: Springer Nature
Release Date : 2019-11-23
Data Visualisation With R written by Thomas Rahlf and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-23 with Computers categories.
This book introduces readers to the fundamentals of creating presentation graphics using R, based on 111 detailed and complete scripts. It shows how bar and column charts, population pyramids, Lorenz curves, box plots, scatter plots, time series, radial polygons, Gantt charts, heat maps, bump charts, mosaic and balloon charts, and a series of different thematic map types can be created using R’s Base Graphics System. Every example uses real data and includes step-by-step explanations of the figures and their programming. This second edition contains additional examples for cartograms, chord-diagrams and networks, and interactive visualizations with Javascript. The open source software R is an established standard and a powerful tool for various visualizing applications, integrating nearly all technologies relevant for data visualization. The basic software, enhanced by more than 14000 extension packs currently freely available, is intensively used by organizations including Google, Facebook and the CIA. The book serves as a comprehensive reference guide to a broad variety of applications in various fields. This book is intended for all kinds of R users, ranging from experts, for whom especially the example codes are particularly useful, to beginners, who will find the finished graphics most helpful in learning what R can actually deliver.
Modern Data Science With R
DOWNLOAD
Author : Benjamin S. Baumer
language : en
Publisher: CRC Press
Release Date : 2017-03-16
Modern Data Science With R written by Benjamin S. Baumer and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-16 with Mathematics categories.
Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.
Using R For Data Analysis In Social Sciences
DOWNLOAD
Author : Quan Li
language : en
Publisher: Oxford University Press
Release Date : 2018-05-09
Using R For Data Analysis In Social Sciences written by Quan Li and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-09 with Political Science categories.
Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.
Extending The Linear Model With R
DOWNLOAD
Author : Julian J. Faraway
language : en
Publisher: CRC Press
Release Date : 2016-03-23
Extending The Linear Model With R written by Julian J. Faraway and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-23 with Mathematics categories.
Start Analyzing a Wide Range of Problems Since the publication of the bestselling, highly recommended first edition, R has considerably expanded both in popularity and in the number of packages available. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition takes advantage of the greater functionality now available in R and substantially revises and adds several topics. New to the Second Edition Expanded coverage of binary and binomial responses, including proportion responses, quasibinomial and beta regression, and applied considerations regarding these models New sections on Poisson models with dispersion, zero inflated count models, linear discriminant analysis, and sandwich and robust estimation for generalized linear models (GLMs) Revised chapters on random effects and repeated measures that reflect changes in the lme4 package and show how to perform hypothesis testing for the models using other methods New chapter on the Bayesian analysis of mixed effect models that illustrates the use of STAN and presents the approximation method of INLA Revised chapter on generalized linear mixed models to reflect the much richer choice of fitting software now available Updated coverage of splines and confidence bands in the chapter on nonparametric regression New material on random forests for regression and classification Revamped R code throughout, particularly the many plots using the ggplot2 package Revised and expanded exercises with solutions now included Demonstrates the Interplay of Theory and Practice This textbook continues to cover a range of techniques that grow from the linear regression model. It presents three extensions to the linear framework: GLMs, mixed effect models, and nonparametric regression models. The book explains data analysis using real examples and includes all the R commands necessary to reproduce the analyses.
Data Science With R For Psychologists And Healthcare Professionals
DOWNLOAD
Author : Christian Ryan
language : en
Publisher: CRC Press
Release Date : 2021-12-22
Data Science With R For Psychologists And Healthcare Professionals written by Christian Ryan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-22 with Business & Economics categories.
This introduction to R for students of psychology and health sciences aims to fast-track the reader through some of the most difficult aspects of learning to do data analysis and statistics. It demonstrates the benefits for reproducibility and reliability of using a programming language over commercial software packages such as SPSS. The early chapters build at a gentle pace, to give the reader confidence in moving from a point-and-click software environment, to the more robust and reliable world of statistical coding. This is a thoroughly modern and up-to-date approach using RStudio and the tidyverse. A range of R packages relevant to psychological research are discussed in detail. A great deal of research in the health sciences concerns questionnaire data, which may require recoding, aggregation and transformation before quantitative techniques and statistical analysis can be applied. R offers many useful and transparent functions to process data and check psychometric properties. These are illustrated in detail, along with a wide range of tools R affords for data visualisation. Many introductory statistics books for the health sciences rely on toy examples - in contrast, this book benefits from utilising open datasets from published psychological studies, to both motivate and demonstrate the transition from data manipulation and analysis to published report. R Markdown is becoming the preferred method for communicating in the open science community. This book also covers the detail of how to integrate the use of R Markdown documents into the research workflow and how to use these in preparing manuscripts for publication, adhering to the latest APA style guidelines.
Statistics And Data Analysis For Microarrays Using R And Bioconductor
DOWNLOAD
Author : Sorin Draghici
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Statistics And Data Analysis For Microarrays Using R And Bioconductor written by Sorin Draghici and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Computers categories.
Richly illustrated in color, Statistics and Data Analysis for Microarrays Using R and Bioconductor, Second Edition provides a clear and rigorous description of powerful analysis techniques and algorithms for mining and interpreting biological information. Omitting tedious details, heavy formalisms, and cryptic notations, the text takes a hands-on, example-based approach that teaches students the basics of R and microarray technology as well as how to choose and apply the proper data analysis tool to specific problems. New to the Second EditionCompletely updated and double the size of its predecessor, this timely second edition replaces the commercial software with the open source R and Bioconductor environments. Fourteen new chapters cover such topics as the basic mechanisms of the cell, reliability and reproducibility issues in DNA microarrays, basic statistics and linear models in R, experiment design, multiple comparisons, quality control, data pre-processing and normalization, Gene Ontology analysis, pathway analysis, and machine learning techniques. Methods are illustrated with toy examples and real data and the R code for all routines is available on an accompanying downloadable resource. With all the necessary prerequisites included, this best-selling book guides students from very basic notions to advanced analysis techniques in R and Bioconductor. The first half of the text presents an overview of microarrays and the statistical elements that form the building blocks of any data analysis. The second half introduces the techniques most commonly used in the analysis of microarray data.
Pragmatics Of Uncertainty
DOWNLOAD
Author : Joseph B. Kadane
language : en
Publisher: CRC Press
Release Date : 2016-10-14
Pragmatics Of Uncertainty written by Joseph B. Kadane and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-14 with Mathematics categories.
A fair question to ask of an advocate of subjective Bayesianism (which the author is) is "how would you model uncertainty?" In this book, the author writes about how he has done it using real problems from the past, and offers additional comments about the context in which he was working.