[PDF] Analysis Of Neural Data - eBooks Review

Analysis Of Neural Data


Analysis Of Neural Data
DOWNLOAD

Download Analysis Of Neural Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis Of Neural Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Analysis Of Neural Data


Analysis Of Neural Data
DOWNLOAD
Author : Robert E. Kass
language : en
Publisher:
Release Date : 2014-03-31

Analysis Of Neural Data written by Robert E. Kass and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-31 with categories.




Case Studies In Neural Data Analysis


Case Studies In Neural Data Analysis
DOWNLOAD
Author : Mark A. Kramer
language : en
Publisher: MIT Press
Release Date : 2016-11-04

Case Studies In Neural Data Analysis written by Mark A. Kramer and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-04 with Science categories.


A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference. A version of this textbook with all of the examples in Python is available on the MIT Press website.



Advanced Data Analysis In Neuroscience


Advanced Data Analysis In Neuroscience
DOWNLOAD
Author : Daniel Durstewitz
language : en
Publisher: Springer
Release Date : 2017-09-15

Advanced Data Analysis In Neuroscience written by Daniel Durstewitz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-15 with Medical categories.


This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego “This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. “ Bruno B. Averbeck



Neural Data Science


Neural Data Science
DOWNLOAD
Author : Erik Lee Nylen
language : en
Publisher: Academic Press
Release Date : 2017-03-21

Neural Data Science written by Erik Lee Nylen and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-21 with Science categories.


A Primer with MATLAB® and PythonT present important information on the emergence of the use of Python, a more general purpose option to MATLAB, the preferred computation language for scientific computing and analysis in neuroscience. This book addresses the snake in the room by providing a beginner's introduction to the principles of computation and data analysis in neuroscience, using both Python and MATLAB, giving readers the ability to transcend platform tribalism and enable coding versatility.



Fundamentals Of Brain Network Analysis


Fundamentals Of Brain Network Analysis
DOWNLOAD
Author : Alex Fornito
language : en
Publisher: Academic Press
Release Date : 2016-03-04

Fundamentals Of Brain Network Analysis written by Alex Fornito and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-04 with Medical categories.


Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain



Analyzing Neural Time Series Data


Analyzing Neural Time Series Data
DOWNLOAD
Author : Mike X Cohen
language : en
Publisher: MIT Press
Release Date : 2014-01-17

Analyzing Neural Time Series Data written by Mike X Cohen and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-17 with Psychology categories.


A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.



Sensitivity Analysis For Neural Networks


Sensitivity Analysis For Neural Networks
DOWNLOAD
Author : Daniel S. Yeung
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-11-09

Sensitivity Analysis For Neural Networks written by Daniel S. Yeung and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-09 with Computers categories.


Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.



Statistical Field Theory For Neural Networks


Statistical Field Theory For Neural Networks
DOWNLOAD
Author : Moritz Helias
language : en
Publisher: Springer Nature
Release Date : 2020-08-20

Statistical Field Theory For Neural Networks written by Moritz Helias and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-20 with Science categories.


This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra.



Neural Networks And Statistical Learning


Neural Networks And Statistical Learning
DOWNLOAD
Author : Ke-Lin Du
language : en
Publisher: Springer Nature
Release Date : 2019-09-12

Neural Networks And Statistical Learning written by Ke-Lin Du and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-12 with Mathematics categories.


This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.



Artificial Neural Networks In Biological And Environmental Analysis


Artificial Neural Networks In Biological And Environmental Analysis
DOWNLOAD
Author : Grady Hanrahan
language : en
Publisher: CRC Press
Release Date : 2011-01-18

Artificial Neural Networks In Biological And Environmental Analysis written by Grady Hanrahan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-18 with Mathematics categories.


Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound