Analysis On Fock Spaces

DOWNLOAD
Download Analysis On Fock Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis On Fock Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Analysis On Fock Spaces
DOWNLOAD
Author : Kehe Zhu
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-05-26
Analysis On Fock Spaces written by Kehe Zhu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-26 with Mathematics categories.
Several natural Lp spaces of analytic functions have been widely studied in the past few decades, including Hardy spaces, Bergman spaces, and Fock spaces. The terms “Hardy spaces” and “Bergman spaces” are by now standard and well established. But the term “Fock spaces” is a different story. Numerous excellent books now exist on the subject of Hardy spaces. Several books about Bergman spaces, including some of the author’s, have also appeared in the past few decades. But there has been no book on the market concerning the Fock spaces. The purpose of this book is to fill that void, especially when many results in the subject are complete by now. This book presents important results and techniques summarized in one place, so that new comers, especially graduate students, have a convenient reference to the subject. This book contains proofs that are new and simpler than the existing ones in the literature. In particular, the book avoids the use of the Heisenberg group, the Fourier transform, and the heat equation. This helps to keep the prerequisites to a minimum. A standard graduate course in each of real analysis, complex analysis, and functional analysis should be sufficient preparation for the reader.
Analysis On Fock Spaces
DOWNLOAD
Author : Springer
language : en
Publisher:
Release Date : 2012-08-31
Analysis On Fock Spaces written by Springer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-31 with categories.
Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields An Introduction To Mathematical Analysis Of Quantum Fields Second Edition
DOWNLOAD
Author : Asao Arai
language : en
Publisher: World Scientific
Release Date : 2024-09-03
Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields An Introduction To Mathematical Analysis Of Quantum Fields Second Edition written by Asao Arai and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-03 with Mathematics categories.
This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.
A Complex Analysis Problem Book
DOWNLOAD
Author : Daniel Alpay
language : en
Publisher: Birkhäuser
Release Date : 2016-10-26
A Complex Analysis Problem Book written by Daniel Alpay and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-26 with Mathematics categories.
This second edition presents a collection of exercises on the theory of analytic functions, including completed and detailed solutions. It introduces students to various applications and aspects of the theory of analytic functions not always touched on in a first course, while also addressing topics of interest to electrical engineering students (e.g., the realization of rational functions and its connections to the theory of linear systems and state space representations of such systems). It provides examples of important Hilbert spaces of analytic functions (in particular the Hardy space and the Fock space), and also includes a section reviewing essential aspects of topology, functional analysis and Lebesgue integration. Benefits of the 2nd edition Rational functions are now covered in a separate chapter. Further, the section on conformal mappings has been expanded.
Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields An Introduction To Mathematical Analysis Of Quantum Fields
DOWNLOAD
Author : Asao Arai
language : en
Publisher: World Scientific
Release Date : 2017-12-20
Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields An Introduction To Mathematical Analysis Of Quantum Fields written by Asao Arai and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-20 with Science categories.
This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation relations and canonical anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and a short description to each model is given.To graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory, this book is a good introductory text. It is also well suited for self-study and will provide readers a firm foundation of knowledge and mathematical techniques for reading more advanced books and current research articles in the field of mathematical analysis on quantum fields. Also, numerous problems are added to aid readers to develop a deeper understanding of the field.
Analysis On Gaussian Spaces
DOWNLOAD
Author : Yaozhong Hu
language : en
Publisher: World Scientific
Release Date : 2016-08-30
Analysis On Gaussian Spaces written by Yaozhong Hu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-30 with Mathematics categories.
'Written by a well-known expert in fractional stochastic calculus, this book offers a comprehensive overview of Gaussian analysis, with particular emphasis on nonlinear Gaussian functionals. In addition, it covers some topics that are not frequently encountered in other treatments, such as Littlewood-Paley-Stein, etc. This coverage makes the book a valuable addition to the literature. Many results presented in this book were hitherto available only in the research literature in the form of research papers by the author and his co-authors.'Mathematical Reviews ClippingsAnalysis of functions on the finite dimensional Euclidean space with respect to the Lebesgue measure is fundamental in mathematics. The extension to infinite dimension is a great challenge due to the lack of Lebesgue measure on infinite dimensional space. Instead the most popular measure used in infinite dimensional space is the Gaussian measure, which has been unified under the terminology of 'abstract Wiener space'.Out of the large amount of work on this topic, this book presents some fundamental results plus recent progress. We shall present some results on the Gaussian space itself such as the Brunn-Minkowski inequality, Small ball estimates, large tail estimates. The majority part of this book is devoted to the analysis of nonlinear functions on the Gaussian space. Derivative, Sobolev spaces are introduced, while the famous Poincaré inequality, logarithmic inequality, hypercontractive inequality, Meyer's inequality, Littlewood-Paley-Stein-Meyer theory are given in details.This book includes some basic material that cannot be found elsewhere that the author believes should be an integral part of the subject. For example, the book includes some interesting and important inequalities, the Littlewood-Paley-Stein-Meyer theory, and the Hörmander theorem. The book also includes some recent progress achieved by the author and collaborators on density convergence, numerical solutions, local times.
Gaussian Hilbert Spaces
DOWNLOAD
Author : Svante Janson
language : en
Publisher: Cambridge University Press
Release Date : 1997-06-12
Gaussian Hilbert Spaces written by Svante Janson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-06-12 with Mathematics categories.
This book treats the very special and fundamental mathematical properties that hold for a family of Gaussian (or normal) random variables. Such random variables have many applications in probability theory, other parts of mathematics, statistics and theoretical physics. The emphasis throughout this book is on the mathematical structures common to all these applications. This will be an excellent resource for all researchers whose work involves random variables.
Operator Theory In Function Spaces
DOWNLOAD
Author : Kehe Zhu
language : en
Publisher: American Mathematical Soc.
Release Date : 2007
Operator Theory In Function Spaces written by Kehe Zhu and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.
Recent Developments In Infinite Dimensional Analysis And Quantum Probability
DOWNLOAD
Author : Luigi Accardi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Recent Developments In Infinite Dimensional Analysis And Quantum Probability written by Luigi Accardi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Recent Developments in Infinite-Dimensional Analysis and Quantum Probability is dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday. The book is more than a collection of articles. In fact, in it the reader will find a consistent editorial work, devoted to attempting to obtain a unitary picture from the different contributions and to give a comprehensive account of important recent developments in contemporary white noise analysis and some of its applications. For this reason, not only the latest results, but also motivations, explanations and connections with previous work have been included. The wealth of applications, from number theory to signal processing, from optimal filtering to information theory, from the statistics of stationary flows to quantum cable equations, show the power of white noise analysis as a tool. Beyond these, the authors emphasize its connections with practically all branches of contemporary probability, including stochastic geometry, the structure theory of stationary Gaussian processes, Neumann boundary value problems, and large deviations.