Analysis On Gaussian Spaces

DOWNLOAD
Download Analysis On Gaussian Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis On Gaussian Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Analysis On Gaussian Spaces
DOWNLOAD
Author : Yaozhong Hu
language : en
Publisher: World Scientific
Release Date : 2016-08-30
Analysis On Gaussian Spaces written by Yaozhong Hu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-30 with Mathematics categories.
'Written by a well-known expert in fractional stochastic calculus, this book offers a comprehensive overview of Gaussian analysis, with particular emphasis on nonlinear Gaussian functionals. In addition, it covers some topics that are not frequently encountered in other treatments, such as Littlewood-Paley-Stein, etc. This coverage makes the book a valuable addition to the literature. Many results presented in this book were hitherto available only in the research literature in the form of research papers by the author and his co-authors.'Mathematical Reviews ClippingsAnalysis of functions on the finite dimensional Euclidean space with respect to the Lebesgue measure is fundamental in mathematics. The extension to infinite dimension is a great challenge due to the lack of Lebesgue measure on infinite dimensional space. Instead the most popular measure used in infinite dimensional space is the Gaussian measure, which has been unified under the terminology of 'abstract Wiener space'.Out of the large amount of work on this topic, this book presents some fundamental results plus recent progress. We shall present some results on the Gaussian space itself such as the Brunn-Minkowski inequality, Small ball estimates, large tail estimates. The majority part of this book is devoted to the analysis of nonlinear functions on the Gaussian space. Derivative, Sobolev spaces are introduced, while the famous Poincaré inequality, logarithmic inequality, hypercontractive inequality, Meyer's inequality, Littlewood-Paley-Stein-Meyer theory are given in details.This book includes some basic material that cannot be found elsewhere that the author believes should be an integral part of the subject. For example, the book includes some interesting and important inequalities, the Littlewood-Paley-Stein-Meyer theory, and the Hörmander theorem. The book also includes some recent progress achieved by the author and collaborators on density convergence, numerical solutions, local times.
Gaussian Hilbert Spaces
DOWNLOAD
Author : Svante Janson
language : en
Publisher: Cambridge University Press
Release Date : 1997-06-12
Gaussian Hilbert Spaces written by Svante Janson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-06-12 with Mathematics categories.
This book treats the very special and fundamental mathematical properties that hold for a family of Gaussian (or normal) random variables. Such random variables have many applications in probability theory, other parts of mathematics, statistics and theoretical physics. The emphasis throughout this book is on the mathematical structures common to all these applications. This will be an excellent resource for all researchers whose work involves random variables.
Gaussian Measures In Banach Spaces
DOWNLOAD
Author : H.-H. Kuo
language : en
Publisher: Springer
Release Date : 2006-11-14
Gaussian Measures In Banach Spaces written by H.-H. Kuo and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.
Gaussian Harmonic Analysis
DOWNLOAD
Author : Wilfredo Urbina-Romero
language : en
Publisher: Springer
Release Date : 2019-06-21
Gaussian Harmonic Analysis written by Wilfredo Urbina-Romero and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-21 with Mathematics categories.
Authored by a ranking authority in Gaussian harmonic analysis, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: harmonic analysis and probability. The book is intended for a very diverse audience, from graduate students all the way to researchers working in a broad spectrum of areas in analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of real analysis as well as with classical harmonic analysis, including Calderón-Zygmund theory; also some knowledge of basic orthogonal polynomials theory would be convenient. The monograph develops the main topics of classical harmonic analysis (semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, spectral multipliers, fractional integrals and fractional derivatives, singular integrals) with respect to the Gaussian measure. The text provide an updated exposition, as self-contained as possible, of all the topics in Gaussian harmonic analysis that up to now are mostly scattered in research papers and sections of books; also an exhaustive bibliography for further reading. Each chapter ends with a section of notes and further results where connections between Gaussian harmonic analysis and other connected fields, points of view and alternative techniques are given. Mathematicians and researchers in several areas will find the breadth and depth of the treatment of the subject highly useful.
An Introduction To Infinite Dimensional Analysis
DOWNLOAD
Author : Giuseppe Da Prato
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-08-25
An Introduction To Infinite Dimensional Analysis written by Giuseppe Da Prato and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-08-25 with Mathematics categories.
Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.
Gaussian Processes For Machine Learning
DOWNLOAD
Author : Carl Edward Rasmussen
language : en
Publisher: MIT Press
Release Date : 2005-11-23
Gaussian Processes For Machine Learning written by Carl Edward Rasmussen and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-23 with Computers categories.
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Mathematical Analysis And Applications
DOWNLOAD
Author : Michael Ruzhansky
language : en
Publisher: John Wiley & Sons
Release Date : 2018-04-11
Mathematical Analysis And Applications written by Michael Ruzhansky and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-11 with Mathematics categories.
An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.
Stochastic Analysis
DOWNLOAD
Author : Paul Malliavin
language : en
Publisher: Springer
Release Date : 2015-06-12
Stochastic Analysis written by Paul Malliavin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-12 with Mathematics categories.
This book accounts in 5 independent parts, recent main developments of Stochastic Analysis: Gross-Stroock Sobolev space over a Gaussian probability space; quasi-sure analysis; anticipate stochastic integrals as divergence operators; principle of transfer from ordinary differential equations to stochastic differential equations; Malliavin calculus and elliptic estimates; stochastic Analysis in infinite dimension.
Reproducing Kernel Hilbert Spaces In Probability And Statistics
DOWNLOAD
Author : Alain Berlinet
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-28
Reproducing Kernel Hilbert Spaces In Probability And Statistics written by Alain Berlinet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-28 with Business & Economics categories.
The reproducing kernel Hilbert space construction is a bijection or transform theory which associates a positive definite kernel (gaussian processes) with a Hilbert space offunctions. Like all transform theories (think Fourier), problems in one space may become transparent in the other, and optimal solutions in one space are often usefully optimal in the other. The theory was born in complex function theory, abstracted and then accidently injected into Statistics; Manny Parzen as a graduate student at Berkeley was given a strip of paper containing his qualifying exam problem- It read "reproducing kernel Hilbert space"- In the 1950's this was a truly obscure topic. Parzen tracked it down and internalized the subject. Soon after, he applied it to problems with the following fla vor: consider estimating the mean functions of a gaussian process. The mean functions which cannot be distinguished with probability one are precisely the functions in the Hilbert space associated to the covariance kernel of the processes. Parzen's own lively account of his work on re producing kernels is charmingly told in his interview with H. Joseph Newton in Statistical Science, 17, 2002, p. 364-366. Parzen moved to Stanford and his infectious enthusiasm caught Jerry Sacks, Don Ylvisaker and Grace Wahba among others. Sacks and Ylvis aker applied the ideas to design problems such as the following. Sup pose (XdO
Time Series Analysis By State Space Methods
DOWNLOAD
Author : James Durbin
language : en
Publisher: Oxford University Press
Release Date : 2001-06-21
Time Series Analysis By State Space Methods written by James Durbin and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-06-21 with Business & Economics categories.
State space time series analysis emerged in the 1960s in engineering, but its applications have spread to other fields. Durbin (statistics, London School of Economics and Political Science) and Koopman (econometrics, Free U., Amsterdam) extol the virtues of such models over the main analytical system currently used for time series data, Box-Jenkins' ARIMA. What distinguishes state space time models is that they separately model components such as trend, seasonal, regression elements and disturbance terms. Part I focuses on traditional and new techniques based on the linear Gaussian model. Part II presents new material extending the state space model to non-Gaussian observations. c. Book News Inc.