[PDF] Gaussian Processes For Machine Learning - eBooks Review

Gaussian Processes For Machine Learning


Gaussian Processes For Machine Learning
DOWNLOAD

Download Gaussian Processes For Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Gaussian Processes For Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Gaussian Processes For Machine Learning


Gaussian Processes For Machine Learning
DOWNLOAD
Author : Carl Edward Rasmussen
language : en
Publisher: MIT Press
Release Date : 2005-11-23

Gaussian Processes For Machine Learning written by Carl Edward Rasmussen and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-23 with Computers categories.


A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.



Bayesian Reasoning And Gaussian Processes For Machine Learning Applications


Bayesian Reasoning And Gaussian Processes For Machine Learning Applications
DOWNLOAD
Author : Hemachandran K
language : en
Publisher: CRC Press
Release Date : 2022-04-14

Bayesian Reasoning And Gaussian Processes For Machine Learning Applications written by Hemachandran K and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-14 with Business & Economics categories.


This book introduces Bayesian reasoning and Gaussian processes into machine learning applications. Bayesian methods are applied in many areas, such as game development, decision making, and drug discovery. It is very effective for machine learning algorithms in handling missing data and extracting information from small datasets. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications uses a statistical background to understand continuous distributions and how learning can be viewed from a probabilistic framework. The chapters progress into such machine learning topics as belief network and Bayesian reinforcement learning, which is followed by Gaussian process introduction, classification, regression, covariance, and performance analysis of Gaussian processes with other models. FEATURES Contains recent advancements in machine learning Highlights applications of machine learning algorithms Offers both quantitative and qualitative research Includes numerous case studies This book is aimed at graduates, researchers, and professionals in the field of data science and machine learning.



Advanced Lectures On Machine Learning


Advanced Lectures On Machine Learning
DOWNLOAD
Author : Olivier Bousquet
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-02

Advanced Lectures On Machine Learning written by Olivier Bousquet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-02 with Computers categories.


Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.



Lectures On Gaussian Processes


Lectures On Gaussian Processes
DOWNLOAD
Author : Mikhail Lifshits
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-11

Lectures On Gaussian Processes written by Mikhail Lifshits and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-11 with Mathematics categories.


Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.​



Learning Kernel Classifiers


Learning Kernel Classifiers
DOWNLOAD
Author : Ralf Herbrich
language : en
Publisher: MIT Press
Release Date : 2001-12-07

Learning Kernel Classifiers written by Ralf Herbrich and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-12-07 with Computers categories.


An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.



Bayesian Time Series Models


Bayesian Time Series Models
DOWNLOAD
Author : David Barber
language : en
Publisher: Cambridge University Press
Release Date : 2011-08-11

Bayesian Time Series Models written by David Barber and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-11 with Computers categories.


The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.



Modelling And Control Of Dynamic Systems Using Gaussian Process Models


Modelling And Control Of Dynamic Systems Using Gaussian Process Models
DOWNLOAD
Author : Juš Kocijan
language : en
Publisher: Springer
Release Date : 2015-11-21

Modelling And Control Of Dynamic Systems Using Gaussian Process Models written by Juš Kocijan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-21 with Technology & Engineering categories.


This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.



Surrogates


Surrogates
DOWNLOAD
Author : Robert B. Gramacy
language : en
Publisher: CRC Press
Release Date : 2020-03-10

Surrogates written by Robert B. Gramacy and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-10 with Mathematics categories.


Computer simulation experiments are essential to modern scientific discovery, whether that be in physics, chemistry, biology, epidemiology, ecology, engineering, etc. Surrogates are meta-models of computer simulations, used to solve mathematical models that are too intricate to be worked by hand. Gaussian process (GP) regression is a supremely flexible tool for the analysis of computer simulation experiments. This book presents an applied introduction to GP regression for modelling and optimization of computer simulation experiments. Features: • Emphasis on methods, applications, and reproducibility. • R code is integrated throughout for application of the methods. • Includes more than 200 full colour figures. • Includes many exercises to supplement understanding, with separate solutions available from the author. • Supported by a website with full code available to reproduce all methods and examples. The book is primarily designed as a textbook for postgraduate students studying GP regression from mathematics, statistics, computer science, and engineering. Given the breadth of examples, it could also be used by researchers from these fields, as well as from economics, life science, social science, etc.



Field And Service Robotics


Field And Service Robotics
DOWNLOAD
Author : Christian Laugier
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-04-24

Field And Service Robotics written by Christian Laugier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-24 with Technology & Engineering categories.


This books presents the results of the 6th edition of "Field and Service Robotics" FSR03, held in Chamonix, France, July 2007. The conference provided a forum for researchers, professionals and robot manufacturers to exchange up-to-date technical knowledge and experience. This book offers a collection of a broad range of topics including: Underwater Robots and Systems, Autonomous Navigation for Unmanned Aerial Vehicles, Simultaneous Localization and Mapping, and Climbing Robotics.



Machine Learning And Knowledge Discovery In Databases


Machine Learning And Knowledge Discovery In Databases
DOWNLOAD
Author : Walter Daelemans
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-09-04

Machine Learning And Knowledge Discovery In Databases written by Walter Daelemans and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-04 with Computers categories.


This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.