Bayesian Time Series Models

DOWNLOAD
Download Bayesian Time Series Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Time Series Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Time Series Models
DOWNLOAD
Author : David Barber
language : en
Publisher: Cambridge University Press
Release Date : 2011-08-11
Bayesian Time Series Models written by David Barber and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-11 with Computers categories.
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.
Applied Bayesian Forecasting And Time Series Analysis
DOWNLOAD
Author : Andy Pole
language : en
Publisher: CRC Press
Release Date : 1994-09-01
Applied Bayesian Forecasting And Time Series Analysis written by Andy Pole and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-09-01 with Mathematics categories.
Practical in its approach, Applied Bayesian Forecasting and Time Series Analysis provides the theories, methods, and tools necessary for forecasting and the analysis of time series. The authors unify the concepts, model forms, and modeling requirements within the framework of the dynamic linear mode (DLM). They include a complete theoretical development of the DLM and illustrate each step with analysis of time series data. Using real data sets the authors: Explore diverse aspects of time series, including how to identify, structure, explain observed behavior, model structures and behaviors, and interpret analyses to make informed forecasts Illustrate concepts such as component decomposition, fundamental model forms including trends and cycles, and practical modeling requirements for routine change and unusual events Conduct all analyses in the BATS computer programs, furnishing online that program and the more than 50 data sets used in the text The result is a clear presentation of the Bayesian paradigm: quantified subjective judgements derived from selected models applied to time series observations. Accessible to undergraduates, this unique volume also offers complete guidelines valuable to researchers, practitioners, and advanced students in statistics, operations research, and engineering.
Bayesian Statistical Modelling
DOWNLOAD
Author : Peter Congdon
language : en
Publisher: John Wiley & Sons
Release Date : 2007-04-04
Bayesian Statistical Modelling written by Peter Congdon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-04 with Mathematics categories.
Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology
Applied Bayesian Modelling
DOWNLOAD
Author : Peter Congdon
language : en
Publisher: John Wiley & Sons
Release Date : 2014-05-23
Applied Bayesian Modelling written by Peter Congdon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-23 with Mathematics categories.
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.
Bayesian Hierarchical Models
DOWNLOAD
Author : Peter D. Congdon
language : en
Publisher: CRC Press
Release Date : 2019-09-16
Bayesian Hierarchical Models written by Peter D. Congdon and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-16 with Mathematics categories.
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Bayesian Forecasting And Dynamic Models
DOWNLOAD
Author : Mike West
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-05-02
Bayesian Forecasting And Dynamic Models written by Mike West and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-02 with Mathematics categories.
This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti?c, and socio-economic ?elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers.
Essentials Of Time Series Econometrics
DOWNLOAD
Author : Rajat Chopra
language : en
Publisher: Educohack Press
Release Date : 2025-02-20
Essentials Of Time Series Econometrics written by Rajat Chopra and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-20 with Science categories.
"Essentials of Time Series Econometrics" explores the fundamental principles, methodologies, and practical applications of time series analysis in economics, finance, and related fields. Designed for students, researchers, and practitioners, this guide covers both theoretical foundations and practical techniques used to analyze temporal data and make informed decisions. We cover a wide range of topics, including basic concepts such as stationarity and autocorrelation, as well as advanced techniques like machine learning approaches, Bayesian analysis, and high-frequency data analysis. Each chapter provides clear explanations of key concepts, methodologies, and mathematical principles. Real-world examples and case studies illustrate the application of time series analysis in various domains. Hands-on exercises and practical assignments reinforce understanding and develop analytical skills. Contributions from leading experts ensure readers benefit from the latest research findings. A companion website offers additional resources, including datasets, code examples, and supplementary materials. This book is ideal for students, researchers, and practitioners looking to build a solid foundation in time series econometrics or apply advanced techniques to real-world problems.
Bayesian Analysis Of Linear Models
DOWNLOAD
Author : Broemeling
language : en
Publisher: Routledge
Release Date : 2017-11-22
Bayesian Analysis Of Linear Models written by Broemeling and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Mathematics categories.
With Bayesian statistics rapidly becoming accepted as a way to solve applied statisticalproblems, the need for a comprehensive, up-to-date source on the latest advances in thisfield has arisen.Presenting the basic theory of a large variety of linear models from a Bayesian viewpoint,Bayesian Analysis of Linear Models fills this need. Plus, this definitive volume containssomething traditional-a review of Bayesian techniques and methods of estimation, hypothesis,testing, and forecasting as applied to the standard populations ... somethinginnovative-a new approach to mixed models and models not generally studied by statisticianssuch as linear dynamic systems and changing parameter models ... and somethingpractical-clear graphs, eary-to-understand examples, end-of-chapter problems, numerousreferences, and a distribution appendix.Comprehensible, unique, and in-depth, Bayesian Analysis of Linear Models is the definitivemonograph for statisticians, econometricians, and engineers. In addition, this text isideal for students in graduate-level courses such as linear models, econometrics, andBayesian inference.
The Oxford Handbook Of Applied Bayesian Analysis
DOWNLOAD
Author : Anthony O' Hagan
language : en
Publisher: OUP Oxford
Release Date : 2010-03-18
The Oxford Handbook Of Applied Bayesian Analysis written by Anthony O' Hagan and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-18 with Mathematics categories.
Bayesian analysis has developed rapidly in applications in the last two decades and research in Bayesian methods remains dynamic and fast-growing. Dramatic advances in modelling concepts and computational technologies now enable routine application of Bayesian analysis using increasingly realistic stochastic models, and this drives the adoption of Bayesian approaches in many areas of science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of application areas. Chapters written by leading exponents of applied Bayesian analysis showcase the scientific ease and natural application of Bayesian modelling, and present solutions to real, engaging, societally important and demanding problems. The chapters are grouped into five general areas: Biomedical & Health Sciences; Industry, Economics & Finance; Environment & Ecology; Policy, Political & Social Sciences; and Natural & Engineering Sciences, and Appendix material in each touches on key concepts, models, and techniques of the chapter that are also of broader pedagogic and applied interest.
Case Studies In Bayesian Statistics
DOWNLOAD
Author : Constantine Gatsonis
language : en
Publisher: Springer Science & Business Media
Release Date : 1998-12-04
Case Studies In Bayesian Statistics written by Constantine Gatsonis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-12-04 with Mathematics categories.
The 4th Workshop on Case Studies in Bayesian Statistics was held at the Car negie Mellon University campus on September 27-28, 1997. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the four invited case studies with the accompanying discus sion as well as nine contributed papers selected by a refereeing process. While most of the case studies in the volume come from biomedical research the reader will also find studies in environmental science and marketing research. INVITED PAPERS In Modeling Customer Survey Data, Linda A. Clark, William S. Cleveland, Lorraine Denby, and Chuanhai LiD use hierarchical modeling with time series components in for customer value analysis (CVA) data from Lucent Technologies. The data were derived from surveys of customers of the company and its competi tors, designed to assess relative performance on a spectrum of issues including product and service quality and pricing. The model provides a full description of the CVA data, with random location and scale effects for survey respondents and longitudinal company effects for each attribute. In addition to assessing the performance of specific companies, the model allows the empirical exploration of the conceptual basis of consumer value analysis. The authors place special em phasis on graphical displays for this complex, multivariate set of data and include a wealth of such plots in the paper.