Applicable Differential Geometry

DOWNLOAD
Download Applicable Differential Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applicable Differential Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applicable Differential Geometry
DOWNLOAD
Author : M. Crampin
language : en
Publisher: Cambridge University Press
Release Date : 1986
Applicable Differential Geometry written by M. Crampin and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with Mathematics categories.
An introduction to geometrical topics used in applied mathematics and theoretical physics.
Applicable Differential Geometry
DOWNLOAD
Author : M. Crampin
language : en
Publisher:
Release Date : 1987
Applicable Differential Geometry written by M. Crampin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987 with categories.
Applicable Differential Geometry
DOWNLOAD
Author : M. Crampin
language : en
Publisher:
Release Date : 2014-05-14
Applicable Differential Geometry written by M. Crampin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-14 with MATHEMATICS categories.
An introduction to geometrical topics used in applied mathematics and theoretical physics.
Differential Geometry
DOWNLOAD
Author : Heinrich W. Guggenheimer
language : en
Publisher: Courier Corporation
Release Date : 2012-04-27
Differential Geometry written by Heinrich W. Guggenheimer and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-27 with Mathematics categories.
This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.
Introduction To Differential Geometry
DOWNLOAD
Author : Joel W. Robbin
language : en
Publisher: Springer Nature
Release Date : 2022-01-12
Introduction To Differential Geometry written by Joel W. Robbin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-12 with Mathematics categories.
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Fundamentals Of Tensor Calculus For Engineers With A Primer On Smooth Manifolds
DOWNLOAD
Author : Uwe Mühlich
language : en
Publisher: Springer
Release Date : 2017-04-18
Fundamentals Of Tensor Calculus For Engineers With A Primer On Smooth Manifolds written by Uwe Mühlich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-18 with Science categories.
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
Discrete Differential Geometry
DOWNLOAD
Author : Alexander I. Bobenko
language : en
Publisher: American Mathematical Soc.
Release Date : 2008
Discrete Differential Geometry written by Alexander I. Bobenko and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Mathematics categories.
"An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of Integrable systems. One of the main goals of this book Is to reveal this integrable structure of discrete differential geometry." "The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question "How do we discretize differential geometry?" arising in their specific field."--BOOK JACKET.
Elementary Differential Geometry
DOWNLOAD
Author : Barrett O'Neill
language : en
Publisher: Academic Press
Release Date : 2014-05-12
Elementary Differential Geometry written by Barrett O'Neill and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Mathematics categories.
Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.
A Course In Modern Mathematical Physics
DOWNLOAD
Author : Peter Szekeres
language : en
Publisher: Cambridge University Press
Release Date : 2004-12-16
A Course In Modern Mathematical Physics written by Peter Szekeres and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-12-16 with Mathematics categories.
This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.