[PDF] Applications Of The Fourier Transform To Convex Geometry - eBooks Review

Applications Of The Fourier Transform To Convex Geometry


Applications Of The Fourier Transform To Convex Geometry
DOWNLOAD

Download Applications Of The Fourier Transform To Convex Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of The Fourier Transform To Convex Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Fourier Analysis In Convex Geometry


Fourier Analysis In Convex Geometry
DOWNLOAD
Author : Alexander Koldobsky
language : en
Publisher: American Mathematical Soc.
Release Date : 2005

Fourier Analysis In Convex Geometry written by Alexander Koldobsky and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Mathematics categories.


The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems. One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the $(n-1)$-dimensional volume of hyperplane sections of the $n$-dimensional unit cube (it is $\sqrt{2}$ for each $n\geq 2$). Another is the Busemann-Petty problem: if $K$ and $L$ are two convex origin-symmetric $n$-dimensional bodies and the $(n-1)$-dimensional volume of each central hyperplane section of $K$ is less than the $(n-1)$-dimensional volume of the corresponding section of $L$, is it true that the $n$-dimensional volume of $K$ is less than the volume of $L$? (The answer is positive for $n\le 4$ and negative for $n>4$.) The book is suitable for all mathematicians interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.



Geometric Applications Of Fourier Series And Spherical Harmonics


Geometric Applications Of Fourier Series And Spherical Harmonics
DOWNLOAD
Author : H. Groemer
language : en
Publisher: Cambridge University Press
Release Date : 1996-09-13

Geometric Applications Of Fourier Series And Spherical Harmonics written by H. Groemer and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-09-13 with Mathematics categories.


This book provides a comprehensive presentation of geometric results, primarily from the theory of convex sets, that have been proved by the use of Fourier series or spherical harmonics. An important feature of the book is that all necessary tools from the classical theory of spherical harmonics are presented with full proofs. These tools are used to prove geometric inequalities, stability results, uniqueness results for projections and intersections by hyperplanes or half-spaces and characterisations of rotors in convex polytopes. Again, full proofs are given. To make the treatment as self-contained as possible the book begins with background material in analysis and the geometry of convex sets. This treatise will be welcomed both as an introduction to the subject and as a reference book for pure and applied mathematics.



Handbook Of Fourier Analysis Its Applications


Handbook Of Fourier Analysis Its Applications
DOWNLOAD
Author : Robert J Marks II
language : en
Publisher: Oxford University Press
Release Date : 2009-01-08

Handbook Of Fourier Analysis Its Applications written by Robert J Marks II and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-08 with Technology & Engineering categories.


Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal processing and related multidimensional transform theory, and quantum physics to elementary deterministic finance and even the foundations of western music theory. As a definitive text on Fourier Analysis, Handbook of Fourier Analysis and Its Applications is meant to replace several less comprehensive volumes on the subject, such as Processing of Multifimensional Signals by Alexandre Smirnov, Modern Sampling Theory by John J. Benedetto and Paulo J.S.G. Ferreira, Vector Space Projections by Henry Stark and Yongyi Yang and Fourier Analysis and Imaging by Ronald N. Bracewell. In addition to being primarily used as a professional handbook, it includes sample problems and their solutions at the end of each section and thus serves as a textbook for advanced undergraduate students and beginning graduate students in courses such as: Multidimensional Signals and Systems, Signal Analysis, Introduction to Shannon Sampling and Interpolation Theory, Random Variables and Stochastic Processes, and Signals and Linear Systems.



Applications Of The Fourier Transform To Convex Geometry


Applications Of The Fourier Transform To Convex Geometry
DOWNLOAD
Author : Vladyslav Yaskin
language : en
Publisher:
Release Date : 2006

Applications Of The Fourier Transform To Convex Geometry written by Vladyslav Yaskin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Convex geometry categories.


The thesis is devoted to the study of various problems arising from Convex Geometry and Geometric Functional Analysis using tools of Fourier Analysis. In chapters two through four we consider the Busemann-Petty problem and its different modifications and generalizations. We solve the Busemann-Petty problem in hyperbolic and spherical spaces, and the lower dimensional Busemann-Petty problem in the hyperbolic space. In the Euclidean space we modify the assumptions of the original Busemann-Petty problem to guarantee the affirmative answer in all dimensions. In chapter five we introduce the notion of embedding of a normed space in L0, investigate the geometry of such spaces and prove results confirming the place of L0 in the scale of L [subscript p] spaces. Chapter six is concerned with the study L [subscript p]-centroid bodies associated to symmetric convex bodies and generalization of some known results of Lutwak and Grinberg, Zhang to the case [minus] 1 [less than] p [less than] 1. In chapter seven we discuss Khinchin type inequalities and the slicing problem. We obtain a version of such inequalities for p [greater than] [minus] 2 and as a consequence we prove the slicing problem for the unit balls of spaces that embed in L[subscript] p, p [greater than] [minus] 2.



Fourier Analysis And Convexity


Fourier Analysis And Convexity
DOWNLOAD
Author : Luca Brandolini
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-04-27

Fourier Analysis And Convexity written by Luca Brandolini and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-27 with Mathematics categories.


Over the course of the last century, the systematic exploration of the relationship between Fourier analysis and other branches of mathematics has lead to important advances in geometry, number theory, and analysis, stimulated in part by Hurwitz’s proof of the isoperimetric inequality using Fourier series. This unified, self-contained book presents both a broad overview of Fourier analysis and convexity, as well as an intricate look at applications in some specific settings; it will be useful to graduate students and researchers in harmonic analysis, convex geometry, functional analysis, number theory, computer science, and combinatorial analysis. A wide audience will benefit from the careful demonstration of how Fourier analysis is used to distill the essence of many mathematical problems in a natural and elegant way.



Handbook Of Convex Geometry


Handbook Of Convex Geometry
DOWNLOAD
Author : Bozzano G Luisa
language : en
Publisher: Elsevier
Release Date : 2014-06-28

Handbook Of Convex Geometry written by Bozzano G Luisa and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Mathematics categories.


Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.



Convexity From The Geometric Point Of View


Convexity From The Geometric Point Of View
DOWNLOAD
Author : Vitor Balestro
language : en
Publisher: Springer Nature
Release Date : 2024-07-14

Convexity From The Geometric Point Of View written by Vitor Balestro and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-14 with Mathematics categories.


This text gives a comprehensive introduction to the “common core” of convex geometry. Basic concepts and tools which are present in all branches of that field are presented with a highly didactic approach. Mainly directed to graduate and advanced undergraduates, the book is self-contained in such a way that it can be read by anyone who has standard undergraduate knowledge of analysis and of linear algebra. Additionally, it can be used as a single reference for a complete introduction to convex geometry, and the content coverage is sufficiently broad that the reader may gain a glimpse of the entire breadth of the field and various subfields. The book is suitable as a primary text for courses in convex geometry and also in discrete geometry (including polytopes). It is also appropriate for survey type courses in Banach space theory, convex analysis, differential geometry, and applications of measure theory. Solutions to all exercises are available to instructors who adopt the text for coursework. Most chapters use the same structure with the first part presenting theory and the next containing a healthy range of exercises. Some of the exercises may even be considered as short introductions to ideas which are not covered in the theory portion. Each chapter has a notes section offering a rich narrative to accompany the theory, illuminating the development of ideas, and providing overviews to the literature concerning the covered topics. In most cases, these notes bring the reader to the research front. The text includes many figures that illustrate concepts and some parts of the proofs, enabling the reader to have a better understanding of the geometric meaning of the ideas. An appendix containing basic (and geometric) measure theory collects useful information for convex geometers.



Decay Of The Fourier Transform


Decay Of The Fourier Transform
DOWNLOAD
Author : Alex Iosevich
language : en
Publisher: Springer
Release Date : 2014-10-01

Decay Of The Fourier Transform written by Alex Iosevich and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-01 with Mathematics categories.


The Plancherel formula says that the L^2 norm of the function is equal to the L^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L^2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.​



Convex Functions And Their Applications


Convex Functions And Their Applications
DOWNLOAD
Author : Constantin Niculescu
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-11

Convex Functions And Their Applications written by Constantin Niculescu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-11 with Mathematics categories.


Convex functions play an important role in almost all branches of mathematics as well as other areas of science and engineering. This book is a thorough introduction to contemporary convex function theory addressed to all people whose research or teaching interests intersect with the field of convexity. It covers a large variety of subjects, from the one real variable case (with all its mathematical gems) to some of the most advanced topics such as Choquet's theory, the Prékopa-Leindler type inequalities and their ramifications, as well as the variational approach of partial differential equations and convex programming. Many results are new and the whole book reflects the authors’ own experience, both in teaching and research. The book can serve as a reference and source of inspiration to researchers in several branches of mathematics and engineering and it can also be used for graduate courses.



The Ricci Flow Techniques And Applications


The Ricci Flow Techniques And Applications
DOWNLOAD
Author : Bennett Chow
language : en
Publisher: American Mathematical Soc.
Release Date : 2010-04-21

The Ricci Flow Techniques And Applications written by Bennett Chow and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-21 with Mathematics categories.


The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci flow. In the appendices, we review metric and Riemannian geometry including the space of points at infinity and Sharafutdinov retraction for complete noncompact manifolds with nonnegative sectional curvature. As in the previous volumes, the authors have endeavored, as much as possible, to make the chapters independent of each other. The book makes advanced material accessible to graduate students and nonexperts. It includes a rigorous introduction to some of Perelman's work and explains some technical aspects of Ricci flow useful for singularity analysis. The authors give the appropriate references so that the reader may further pursue the statements and proofs of the various results.