Applied Artificial Neural Networks

DOWNLOAD
Download Applied Artificial Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Artificial Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applied Artificial Neural Networks
DOWNLOAD
Author : Christian Dawson
language : en
Publisher: MDPI
Release Date : 2018-09-27
Applied Artificial Neural Networks written by Christian Dawson and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-27 with Mathematics categories.
This book is a printed edition of the Special Issue "Applied Artificial Neural Network" that was published in Applied Sciences
Artificial Neural Networks
DOWNLOAD
Author : Kevin L. Priddy
language : en
Publisher: SPIE Press
Release Date : 2005
Artificial Neural Networks written by Kevin L. Priddy and has been published by SPIE Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Computers categories.
This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.
Elements Of Artificial Neural Networks
DOWNLOAD
Author : Kishan Mehrotra
language : en
Publisher: MIT Press
Release Date : 1997
Elements Of Artificial Neural Networks written by Kishan Mehrotra and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computers categories.
Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them. The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management. The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods. The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website. Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.
Applied Artificial Neural Network Methods For Engineers And Scientists Solving Algebraic Equations
DOWNLOAD
Author : Snehashish Chakraverty
language : en
Publisher: World Scientific
Release Date : 2021-01-26
Applied Artificial Neural Network Methods For Engineers And Scientists Solving Algebraic Equations written by Snehashish Chakraverty and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-26 with Computers categories.
The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Applied Artificial Higher Order Neural Networks For Control And Recognition
DOWNLOAD
Author : Zhang, Ming
language : en
Publisher: IGI Global
Release Date : 2016-05-05
Applied Artificial Higher Order Neural Networks For Control And Recognition written by Zhang, Ming and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-05 with Computers categories.
In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.
Artificial Neural Networks
DOWNLOAD
Author : David J. Livingstone
language : en
Publisher: Humana Press
Release Date : 2011-10-09
Artificial Neural Networks written by David J. Livingstone and has been published by Humana Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-10-09 with Computers categories.
In this book, international experts report the history of the application of ANN to chemical and biological problems, provide a guide to network architectures, training and the extraction of rules from trained networks, and cover many cutting-edge examples of the application of ANN to chemistry and biology. Methods involving the mapping and interpretation of Infra Red spectra and modelling environmental toxicology are included. This book is an excellent guide to this exciting field.
Artificial Neural Networks In Real Life Applications
DOWNLOAD
Author : Juan Ramon Rabunal
language : en
Publisher: IGI Global
Release Date : 2006-01-01
Artificial Neural Networks In Real Life Applications written by Juan Ramon Rabunal and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Technology & Engineering categories.
"This book offers an outlook of the most recent works at the field of the Artificial Neural Networks (ANN), including theoretical developments and applications of systems using intelligent characteristics for adaptability"--Provided by publisher.
Neural Networks For Applied Sciences And Engineering
DOWNLOAD
Author : Sandhya Samarasinghe
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Neural Networks For Applied Sciences And Engineering written by Sandhya Samarasinghe and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Computers categories.
In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in
Multivariate Statistical Machine Learning Methods For Genomic Prediction
DOWNLOAD
Author : Osval Antonio Montesinos López
language : en
Publisher: Springer Nature
Release Date : 2022-02-14
Multivariate Statistical Machine Learning Methods For Genomic Prediction written by Osval Antonio Montesinos López and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-14 with Technology & Engineering categories.
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.
Advanced Applied Deep Learning
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher: Apress
Release Date : 2019-09-28
Advanced Applied Deep Learning written by Umberto Michelucci and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-28 with Computers categories.
Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level. What You Will Learn See how convolutional neural networks and object detection work Save weights and models on disk Pause training and restart it at a later stage Use hardware acceleration (GPUs) in your code Work with the Dataset TensorFlow abstraction and use pre-trained models and transfer learning Remove and add layers to pre-trained networks to adapt them to your specific project Apply pre-trained models such as Alexnet and VGG16 to new datasets Who This Book Is For Scientists and researchers with intermediate-to-advanced Python and machine learning know-how. Additionally, intermediate knowledge of Keras and TensorFlow is expected.