Approximation Of Multidimensional Hyperbolic Partial Differential Equations

DOWNLOAD
Download Approximation Of Multidimensional Hyperbolic Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation Of Multidimensional Hyperbolic Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Approximation Of Multidimensional Hyperbolic Partial Differential Equations
DOWNLOAD
Author : K. W. Morton
language : en
Publisher:
Release Date : 1996
Approximation Of Multidimensional Hyperbolic Partial Differential Equations written by K. W. Morton and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Applied mathematics categories.
Essential Partial Differential Equations
DOWNLOAD
Author : David F. Griffiths
language : en
Publisher: Springer
Release Date : 2015-09-24
Essential Partial Differential Equations written by David F. Griffiths and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-24 with Mathematics categories.
This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.
Multi Dimensional Hyperbolic Partial Differential Equations
DOWNLOAD
Author : Sylvie Benzoni-Gavage
language : en
Publisher: OUP Oxford
Release Date : 2006-11-23
Multi Dimensional Hyperbolic Partial Differential Equations written by Sylvie Benzoni-Gavage and has been published by OUP Oxford this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-23 with Mathematics categories.
Authored by leading scholars, this comprehensive, self-contained text presents a view of the state of the art in multi-dimensional hyperbolic partial differential equations, with a particular emphasis on problems in which modern tools of analysis have proved useful. Ordered in sections of gradually increasing degrees of difficulty, the text first covers linear Cauchy problems and linear initial boundary value problems, before moving on to nonlinear problems, including shock waves. The book finishes with a discussion of the application of hyperbolic PDEs to gas dynamics, culminating with the shock wave analysis for real fluids. With an extensive bibliography including classical and recent papers both in PDE analysis and in applications (mainly to gas dynamics), this text will be valuable to graduates and researchers in both hyperbolic PDEs and compressible fluid dynamics.
Innovative Methods For Numerical Solutions Of Partial Differential Equations
DOWNLOAD
Author : P. L. Roe
language : en
Publisher: World Scientific
Release Date : 2002
Innovative Methods For Numerical Solutions Of Partial Differential Equations written by P. L. Roe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
This book consists of 20 review articles dedicated to Prof. Philip Roe on the occasion of his 60th birthday and in appreciation of his original contributions to computational fluid dynamics. The articles, written by leading researchers in the field, cover many topics, including theory and applications, algorithm developments and modern computational techniques for industry. Contents: OC A One-Sided ViewOCO: The Real Story (B van Leer); Collocated Upwind Schemes for Ideal MHD (K G Powell); The Penultimate Scheme for Systems of Conservation Laws: Finite Difference ENO with Marquina's Flux Splitting (R P Fedkiw et al.); A Finite Element Based Level-Set Method for Multiphase Flows (B Engquist & A-K Tornberg); The GHOST Fluid Method for Viscous Flows (R P Fedkiw & X-D Liu); Factorizable Schemes for the Equations of Fluid Flow (D Sidilkover); Evolution Galerkin Methods as Finite Difference Schemes (K W Morton); Fluctuation Distribution Schemes on Adjustable Meshes for Scalar Hyperbolic Equations (M J Baines); Superconvergent Lift Estimates Through Adjoint Error Analysis (M B Giles & N A Pierce); Somewhere between the LaxOCoWendroff and Roe Schemes for Calculating Multidimensional Compressible Flows (A Lerat et al.); Flux Schemes for Solving Nonlinear Systems of Conservation Laws (J M Ghidaglia); A LaxOCoWendroff Type Theorem for Residual Schemes (R Abgrall et al.); Kinetic Schemes for Solving SaintOCoVenant Equations on Unstructured Grids (M O Bristeau & B Perthame); Nonlinear Projection Methods for Multi-Entropies NavierOCoStokes Systems (C Berthon & F Coquel); A Hybrid Fluctuation Splitting Scheme for Two-Dimensional Compressible Steady Flows (P De Palma et al.); Some Recent Developments in Kinetic Schemes Based on Least Squares and Entropy Variables (S M Deshpande); Difference Approximation for Scalar Conservation Law. Consistency with Entropy Condition from the Viewpoint of Oleinik's E-Condition (H Aiso); Lessons Learned from the Blast Wave Computation Using Overset Moving Grids: Grid Motion Improves the Resolution (K Fujii). Readership: Researchers and graduate students in numerical and computational mathematics in engineering."
Hyperbolic Problems Theory Numerics Applications
DOWNLOAD
Author : Michael Fey
language : en
Publisher: Springer Science & Business Media
Release Date : 1999-04-01
Hyperbolic Problems Theory Numerics Applications written by Michael Fey and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-04-01 with Mathematics categories.
[Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zürich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics.
Finite Difference Methods For Ordinary And Partial Differential Equations
DOWNLOAD
Author : Randall J. LeVeque
language : en
Publisher: SIAM
Release Date : 2007-01-01
Finite Difference Methods For Ordinary And Partial Differential Equations written by Randall J. LeVeque and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-01 with Mathematics categories.
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Advanced Numerical Approximation Of Nonlinear Hyperbolic Equations
DOWNLOAD
Author : B. Cockburn
language : en
Publisher: Springer
Release Date : 2006-11-14
Advanced Numerical Approximation Of Nonlinear Hyperbolic Equations written by B. Cockburn and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.
This volume contains the texts of the four series of lectures presented by B.Cockburn, C.Johnson, C.W. Shu and E.Tadmor at a C.I.M.E. Summer School. It is aimed at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial differential equations of hyperbolic type, developing shock discontinuities. The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.
Hyperbolic Problems Theory Numerics And Applications In 2 Volumes
DOWNLOAD
Author : Tatsien Li
language : en
Publisher: World Scientific
Release Date : 2012-09-28
Hyperbolic Problems Theory Numerics And Applications In 2 Volumes written by Tatsien Li and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-28 with Mathematics categories.
This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ';Hyperbolic Partial Differential Equations';. It is aimed at mathematicians, researchers in applied sciences and graduate students.
Numerical Approximation Of Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-11
Numerical Approximation Of Partial Differential Equations written by Alfio Quarteroni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-11 with Mathematics categories.
Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).
Scientific And Technical Aerospace Reports
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1995-08
Scientific And Technical Aerospace Reports written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-08 with Aeronautics categories.