Architectures For Computer Vision

DOWNLOAD
Download Architectures For Computer Vision PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Architectures For Computer Vision book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Pyramidal Architectures For Computer Vision
DOWNLOAD
Author : Virginio Cantoni
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Pyramidal Architectures For Computer Vision written by Virginio Cantoni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.
Computer vision deals with the problem of manipulating information contained in large quantities of sensory data, where raw data emerge from the transducing 6 7 sensors at rates between 10 to 10 pixels per second. Conventional general purpose computers are unable to achieve the computation rates required to op erate in real time or even in near real time, so massively parallel systems have been used since their conception in this important practical application area. The development of massively parallel computers was initially character ized by efforts to reach a speedup factor equal to the number of processing elements (linear scaling assumption). This behavior pattern can nearly be achieved only when there is a perfect match between the computational struc ture or data structure and the system architecture. The theory of hierarchical modular systems (HMSs) has shown that even a small number of hierarchical levels can sizably increase the effectiveness of very large systems. In fact, in the last decade several hierarchical architectures that support capabilities which can overcome performances gained with the assumption of linear scaling have been proposed. Of these architectures, the most commonly considered in com puter vision is the one based on a very large number of processing elements (PEs) embedded in a pyramidal structure. Pyramidal architectures supply the same image at different resolution lev els, thus ensuring the use of the most appropriate resolution for the operation, task, and image at hand.
Elements Of Deep Learning For Computer Vision
DOWNLOAD
Author : Bharat Sikka
language : en
Publisher: BPB Publications
Release Date : 2021-06-24
Elements Of Deep Learning For Computer Vision written by Bharat Sikka and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-24 with Computers categories.
Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ● Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ● Includes graphical representations and illustrations of neural networks and teaches how to program them. ● Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ● Get to know the mechanism of deep learning and how neural networks operate. ● Learn to develop a highly accurate neural network model. ● Access to rich Python libraries to address computer vision challenges. ● Build deep learning models using PyTorch and learn how to deploy using the API. ● Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. TABLE OF CONTENTS 1. An Introduction to Deep Learning 2. Supervised Learning 3. Gradient Descent 4. OpenCV with Python 5. Python Imaging Library and Pillow 6. Introduction to Convolutional Neural Networks 7. GoogLeNet, VGGNet, and ResNet 8. Understanding Object Detection 9. Popular Algorithms for Object Detection 10. Faster RCNN with PyTorch and YoloV4 with Darknet 11. Comparing Algorithms and API Deployment with Flask 12. Applications in Real World
Architectures For Computer Vision
DOWNLOAD
Author : Hong Jeong
language : en
Publisher: John Wiley & Sons
Release Date : 2014-08-05
Architectures For Computer Vision written by Hong Jeong and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-05 with Computers categories.
This book provides comprehensive coverage of 3D vision systems, from vision models and state-of-the-art algorithms to their hardware architectures for implementation on DSPs, FPGA and ASIC chips, and GPUs. It aims to fill the gaps between computer vision algorithms and real-time digital circuit implementations, especially with Verilog HDL design. The organization of this book is vision and hardware module directed, based on Verilog vision modules, 3D vision modules, parallel vision architectures, and Verilog designs for the stereo matching system with various parallel architectures. Provides Verilog vision simulators, tailored to the design and testing of general vision chips Bridges the differences between C/C++ and HDL to encompass both software realization and chip implementation; includes numerous examples that realize vision algorithms and general vision processing in HDL Unique in providing an organized and complete overview of how a real-time 3D vision system-on-chip can be designed Focuses on the digital VLSI aspects and implementation of digital signal processing tasks on hardware platforms such as ASICs and FPGAs for 3D vision systems, which have not been comprehensively covered in one single book Provides a timely view of the pervasive use of vision systems and the challenges of fusing information from different vision modules Accompanying website includes software and HDL code packages to enhance further learning and develop advanced systems A solution set and lecture slides are provided on the book's companion website The book is aimed at graduate students and researchers in computer vision and embedded systems, as well as chip and FPGA designers. Senior undergraduate students specializing in VLSI design or computer vision will also find the book to be helpful in understanding advanced applications.
Parallel Architectures And Computer Vision
DOWNLOAD
Author : Ian Page
language : en
Publisher:
Release Date : 1988
Parallel Architectures And Computer Vision written by Ian Page and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988 with Computers categories.
The computer interpretation of visual images offers unlimited potential, with applications ranging from robotics and manufacturing to electronic sensors for aiding the blind. However, there is a huge gap between the promise of technology and what is actually possible now. In order to work effectively, computers will have to sense and analyze visual scenes in a fraction of a second, but currently it is not unusual to devote an hour of computer time to the analysis of a single image. Also, such images often have to be of highly stylized scenes to make any analysis possible. The only hope for the future lies in the use of massive parallel architectures, with perhaps thousands of processors cooperating on the task. Fortunately, the spectacular advances now being made in VLSI technology may allow such parallelism to be economically feasible. This book draws together the proceedings of a key workshop held in 1987. It presents the work of leading U.K. researchers in parallel architectures and computer vision from both industry and academia, providing a clear indication of the state of the art.
Practical Machine Learning For Computer Vision
DOWNLOAD
Author : Valliappa Lakshmanan
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-07-21
Practical Machine Learning For Computer Vision written by Valliappa Lakshmanan and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-21 with Computers categories.
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Advances In Data And Information Sciences
DOWNLOAD
Author : Mohan L. Kolhe
language : en
Publisher: Springer Nature
Release Date : 2020-01-02
Advances In Data And Information Sciences written by Mohan L. Kolhe and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-02 with Technology & Engineering categories.
This book gathers a collection of high-quality peer-reviewed research papers presented at the 2nd International Conference on Data and Information Sciences (ICDIS 2019), held at Raja Balwant Singh Engineering Technical Campus, Agra, India, on March 29–30, 2019. In chapters written by leading researchers, developers, and practitioner from academia and industry, it covers virtually all aspects of computational sciences and information security, including central topics like artificial intelligence, cloud computing, and big data. Highlighting the latest developments and technical solutions, it will show readers from the computer industry how to capitalize on key advances in next-generation computer and communication technology.
Hands On Java Deep Learning For Computer Vision
DOWNLOAD
Author : Klevis Ramo
language : en
Publisher: Packt Publishing
Release Date : 2019-02-21
Hands On Java Deep Learning For Computer Vision written by Klevis Ramo and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with categories.
Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key Features Build real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognition Know best practices on effectively building and deploying deep learning models in Java Book Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The course is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learn Discover neural Networks and their applications in Computer Vision Explore the popular Java frameworks and libraries for deep learning Build deep neural networks in Java Implement an end-to-end image classification application in Java Perform real-time video object detection using deep learning Enhance performance and deploy applications for production Who this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.
Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17
Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
A Guide To Convolutional Neural Networks For Computer Vision
DOWNLOAD
Author : Salman Khan
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2018-02-13
A Guide To Convolutional Neural Networks For Computer Vision written by Salman Khan and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-13 with Computers categories.
Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision. This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation. This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.
Low Power Computer Vision
DOWNLOAD
Author : George K. Thiruvathukal
language : en
Publisher: CRC Press
Release Date : 2022-02-22
Low Power Computer Vision written by George K. Thiruvathukal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-22 with Computers categories.
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.