[PDF] Artificial Intelligence And Deep Learning Essentials - eBooks Review

Artificial Intelligence And Deep Learning Essentials


Artificial Intelligence And Deep Learning Essentials
DOWNLOAD

Download Artificial Intelligence And Deep Learning Essentials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence And Deep Learning Essentials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Artificial Intelligence And Machine Learning Fundamentals


Artificial Intelligence And Machine Learning Fundamentals
DOWNLOAD
Author : Zsolt Nagy
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-12

Artificial Intelligence And Machine Learning Fundamentals written by Zsolt Nagy and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.


Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).



Deep Learning


Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10

Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.


An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.



Fundamentals Of Deep Learning


Fundamentals Of Deep Learning
DOWNLOAD
Author : Nikhil Buduma
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-05-25

Fundamentals Of Deep Learning written by Nikhil Buduma and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-25 with Computers categories.


With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning



Deep Learning


Deep Learning
DOWNLOAD
Author : John D. Kelleher
language : en
Publisher: MIT Press
Release Date : 2019-09-10

Deep Learning written by John D. Kelleher and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-10 with Computers categories.


An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.



Artificial Intelligence And Machine Learning Essentials


Artificial Intelligence And Machine Learning Essentials
DOWNLOAD
Author : Kiran Kumar Pappula
language : en
Publisher: Academic Guru Publishing House
Release Date : 2025-02-06

Artificial Intelligence And Machine Learning Essentials written by Kiran Kumar Pappula and has been published by Academic Guru Publishing House this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-06 with Study Aids categories.


Artificial Intelligence and Machine Learning Essentials is a comprehensive guide tailored for beginners and early-stage learners eager to explore the fascinating world of Al and ML. The book covers key concepts, techniques, and tools across eight well-structured chapters, offering readers a clear pathway from fundamental understanding to practical knowledge. Beginning with the basics of Artificial Intelligence, the book introduces readers to its history, types, and applications across different industries. It then delves into the core principles of Machine Learning, detailing the various types, algorithms, and workflows essential for building intelligent systems. Readers will gain insights into critical data preprocessing techniques that ensure high-quality input for ML models. The book further explores popular supervised and unsupervised learning algorithms, including linear regression, decision trees, K-means, and PCA, making it easier to grasp both the theoretical and practical aspects. Reinforcement Learning, Deep Learning models like CNNs and RNNs, and Natural Language Processing techniques are also thoroughly explained with real-life relevance. Written in simple and accessible language, the book makes complex topics easy to understand, making it suitable for university students, tech enthusiasts, and professionals from non-technical backgrounds. With a strong emphasison clarity and practical understanding, this book serves as a stepping stone into one of the most promising areas of modern technology.



Artificial Intelligence And Deep Learning Essentials


Artificial Intelligence And Deep Learning Essentials
DOWNLOAD
Author : James Russell
language : en
Publisher: Independently Published
Release Date : 2018-05-12

Artificial Intelligence And Deep Learning Essentials written by James Russell and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-12 with categories.


Get to grips with the essentials of deep learning by leveraging the power of PythonKey Features Your one-stop solution to get started with the essentials of deep learning and neural network modeling Train different kinds of neural networks to tackle various problems in Natural Language Processing, computer vision, speech recognition, and more Covers popular Python libraries such as Tensorflow, Keras, and more, along with tips on training, deploying and optimizing your deep learning models in the best possible manner Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning, which is quite tricky to master. This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as Convolutional Neural Network, Recurrent Neural Network, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing. Popular Python library such as TensorFlow is used in this book to build the models. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, small datasets, and more. This book does not assume any prior knowledge of deep learning. By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications.What you will learn Get to grips with the core concepts of deep learning and neural networks Set up deep learning library such as TensorFlow Fine-tune your deep learning models for NLP and Computer Vision applications Unify different information sources, such as images, text, and speech through deep learning Optimize and fine-tune your deep learning models for better performance Train a deep reinforcement learning model that plays a game better than humans Learn how to make your models get the best out of your GPU or CPU Who This Book Is For Aspiring data scientists and machine learning experts who have limited or no exposure to deep learning will find this book to be very useful. If you are looking for a resource that gets you up and running with the fundamentals of deep learning and neural networks, this book is for you. As the models in the book are trained using the popular Python-based libraries such as Tensorflow and Keras, it would be useful to have sound programming knowledge of Python. Table of Contents 1. What is artificial intelligence 2. Why is the artificial intelligence important ? 3. Applications of Machine Learning 4. Semantics, Probability and IA 5. Numerical Computation 6. Sequence Modeling, Recurrent and Recursive Nets 7. Autoencoders 8. Markov Chains, Monte Carlo Methods, and Machine Learning



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Basics Of Artificial Intelligence Machine Learning


Basics Of Artificial Intelligence Machine Learning
DOWNLOAD
Author : Dr Dheeraj Mehrotra
language : en
Publisher: Notion Press
Release Date : 2019-06-03

Basics Of Artificial Intelligence Machine Learning written by Dr Dheeraj Mehrotra and has been published by Notion Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-03 with Computers categories.


The concept of Artificial Intelligence (AI) & Machine Learning (ML) has been in practice for over years with the advent of technological progress. Over time, it has blended our lives through nearly every narration of learning, teaching, enjoyment, normal routine operations and what not. The aspect delivers a common understanding of the topics with reference to it making an impact on our lives, with a better framework of technology affecting our lives in particular. Let us look up to science for a change to be brought about in us. Let us create awareness of making technology available to people, in a broader sense. As that happens, people who are responsible need to be told about the use and misuse of the same. As we lead our lives, we come across the fact that AI, Robotics and Learning Machines seem to be the household topic of discussion. Earlier, AI was perceived to be reserved for only ‘Geniuses’ or ‘Researchers’ or the ‘computer’ community, but it very aptly integrates and impacts each and every aspect of our lives. Knowingly or unknowingly, it has become intellectually influential in shaping our thoughts, actions and the day-to-day chores.



Machine Learning Revised And Updated Edition


Machine Learning Revised And Updated Edition
DOWNLOAD
Author : Ethem Alpaydin
language : en
Publisher: MIT Press
Release Date : 2021-08-17

Machine Learning Revised And Updated Edition written by Ethem Alpaydin and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-17 with Computers categories.


MIT presents a concise primer on machine learning—computer programs that learn from data and the basis of applications like voice recognition and driverless cars. No in-depth knowledge of math or programming required! Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don’t yet use every day, including driverless cars. It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpaydin offers a concise and accessible overview of “the new AI.” This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias. Alpaydin explains that as Big Data has grown, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. He covers: • The evolution of machine learning • Important learning algorithms and example applications • Using machine learning algorithms for pattern recognition • Artificial neural networks inspired by the human brain • Algorithms that learn associations between instances • Reinforcement learning • Transparency, explainability, and fairness in machine learning • The ethical and legal implicates of data-based decision making A comprehensive introduction to machine learning, this book does not require any previous knowledge of mathematics or programming—making it accessible for everyday readers and easily adoptable for classroom syllabi.



Fundamentals Of Machine Learning


Fundamentals Of Machine Learning
DOWNLOAD
Author : Thomas P. Trappenberg
language : en
Publisher:
Release Date : 2020

Fundamentals Of Machine Learning written by Thomas P. Trappenberg and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.