[PDF] Asymptotic Theory Of Statistical Inference - eBooks Review

Asymptotic Theory Of Statistical Inference


Asymptotic Theory Of Statistical Inference
DOWNLOAD

Download Asymptotic Theory Of Statistical Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Asymptotic Theory Of Statistical Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Asymptotic Theory Of Statistics And Probability


Asymptotic Theory Of Statistics And Probability
DOWNLOAD
Author : Anirban DasGupta
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-03-07

Asymptotic Theory Of Statistics And Probability written by Anirban DasGupta and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-07 with Mathematics categories.


This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.



Statistical Estimation


Statistical Estimation
DOWNLOAD
Author : I.A. Ibragimov
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

Statistical Estimation written by I.A. Ibragimov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


when certain parameters in the problem tend to limiting values (for example, when the sample size increases indefinitely, the intensity of the noise ap proaches zero, etc.) To address the problem of asymptotically optimal estimators consider the following important case. Let X 1, X 2, ... , X n be independent observations with the joint probability density !(x,O) (with respect to the Lebesgue measure on the real line) which depends on the unknown patameter o e 9 c R1. It is required to derive the best (asymptotically) estimator 0:( X b ... , X n) of the parameter O. The first question which arises in connection with this problem is how to compare different estimators or, equivalently, how to assess their quality, in terms of the mean square deviation from the parameter or perhaps in some other way. The presently accepted approach to this problem, resulting from A. Wald's contributions, is as follows: introduce a nonnegative function w(0l> ( ), Ob Oe 9 (the loss function) and given two estimators Of and O! n 2 2 the estimator for which the expected loss (risk) Eown(Oj, 0), j = 1 or 2, is smallest is called the better with respect to Wn at point 0 (here EoO is the expectation evaluated under the assumption that the true value of the parameter is 0). Obviously, such a method of comparison is not without its defects.



Asymptotics In Statistics


Asymptotics In Statistics
DOWNLOAD
Author : Lucien Le Cam
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Asymptotics In Statistics written by Lucien Le Cam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


by Sara van de Geer. Also, we did not include material due to David Donoho, lain Johnstone, and their school. We found our selves unprepared to write a distillate of the material. We did touch briefly on "nonparametrics," but not on "semiparamet rics." This is because we feel that the semiparametric situation has not yet been properly structured. We hope that the reader will find this book interesting and challenging, in spite of its shortcomings. The material was typed in LaTeX form by the authors them selves, borrowing liberally from the 1990 script by Chris Bush. It was reviewed anonymously by distinguished colleagues. We thank them for their kind encouragement. Very special thanks are due to Professor David Pollard who took time out of a busy schedule to give us a long list of suggestions. We did not follow them all, but we at least made attempts. We wish also to thank the staff of Springer-Verlag for their help, in particular editor John Kimmel, who tried to make us work with all deliberate speed. Thanks are due to Paul Smith, Te-Ching Chen and Ju-Yi-Yen, who helped with the last-minute editorial corrections.



Asymptotic Theory Of Statistical Inference


Asymptotic Theory Of Statistical Inference
DOWNLOAD
Author : B. L. S. Prakasa Rao
language : en
Publisher:
Release Date : 1987-01-16

Asymptotic Theory Of Statistical Inference written by B. L. S. Prakasa Rao and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987-01-16 with Mathematics categories.


Probability and stochastic processes; Limit theorems for some statistics; Asymptotic theory of estimation; Linear parametric inference; Martingale approach to inference; Inference in nonlinear regression; Von mises functionals; Empirical characteristic function and its applications.



Asymptotic Statistical Inference


Asymptotic Statistical Inference
DOWNLOAD
Author : Shailaja Deshmukh
language : en
Publisher: Springer Nature
Release Date : 2021-07-05

Asymptotic Statistical Inference written by Shailaja Deshmukh and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-05 with Mathematics categories.


The book presents the fundamental concepts from asymptotic statistical inference theory, elaborating on some basic large sample optimality properties of estimators and some test procedures. The most desirable property of consistency of an estimator and its large sample distribution, with suitable normalization, are discussed, the focus being on the consistent and asymptotically normal (CAN) estimators. It is shown that for the probability models belonging to an exponential family and a Cramer family, the maximum likelihood estimators of the indexing parameters are CAN. The book describes some large sample test procedures, in particular, the most frequently used likelihood ratio test procedure. Various applications of the likelihood ratio test procedure are addressed, when the underlying probability model is a multinomial distribution. These include tests for the goodness of fit and tests for contingency tables. The book also discusses a score test and Wald’s test, their relationship with the likelihood ratio test and Karl Pearson’s chi-square test. An important finding is that, while testing any hypothesis about the parameters of a multinomial distribution, a score test statistic and Karl Pearson’s chi-square test statistic are identical. Numerous illustrative examples of differing difficulty level are incorporated to clarify the concepts. For better assimilation of the notions, various exercises are included in each chapter. Solutions to almost all the exercises are given in the last chapter, to motivate students towards solving these exercises and to enable digestion of the underlying concepts. The concepts from asymptotic inference are crucial in modern statistics, but are difficult to grasp in view of their abstract nature. To overcome this difficulty, keeping up with the recent trend of using R software for statistical computations, the book uses it extensively, for illustrating the concepts, verifying the properties of estimators and carrying out various test procedures. The last section of the chapters presents R codes to reveal and visually demonstrate the hidden aspects of different concepts and procedures. Augmenting the theory with R software is a novel and a unique feature of the book. The book is designed primarily to serve as a text book for a one semester introductory course in asymptotic statistical inference, in a post-graduate program, such as Statistics, Bio-statistics or Econometrics. It will also provide sufficient background information for studying inference in stochastic processes. The book will cater to the need of a concise but clear and student-friendly book introducing, conceptually and computationally, basics of asymptotic inference.



Asymptotic Statistics


Asymptotic Statistics
DOWNLOAD
Author : A. W. van der Vaart
language : en
Publisher: Cambridge University Press
Release Date : 2000-06-19

Asymptotic Statistics written by A. W. van der Vaart and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-06-19 with Mathematics categories.


This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master's level statistics text, this book will also give researchers an overview of research in asymptotic statistics.



A Course In Large Sample Theory


A Course In Large Sample Theory
DOWNLOAD
Author : Thomas S. Ferguson
language : en
Publisher: Routledge
Release Date : 2017-09-06

A Course In Large Sample Theory written by Thomas S. Ferguson and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-06 with Mathematics categories.


A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.



Essential Statistical Inference


Essential Statistical Inference
DOWNLOAD
Author : Dennis D. Boos
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-02-06

Essential Statistical Inference written by Dennis D. Boos and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-02-06 with Mathematics categories.


​This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​



Asymptotic Methods In Statistical Decision Theory


Asymptotic Methods In Statistical Decision Theory
DOWNLOAD
Author : Lucien Le Cam
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Asymptotic Methods In Statistical Decision Theory written by Lucien Le Cam and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.



Asymptotic Theory Of Statistical Inference For Time Series


Asymptotic Theory Of Statistical Inference For Time Series
DOWNLOAD
Author : Masanobu Taniguchi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Asymptotic Theory Of Statistical Inference For Time Series written by Masanobu Taniguchi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


There has been much demand for the statistical analysis of dependent ob servations in many fields, for example, economics, engineering and the nat ural sciences. A model that describes the probability structure of a se ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes.