[PDF] Automated Grammatical Error Detection For Language Learners Second Edition - eBooks Review

Automated Grammatical Error Detection For Language Learners Second Edition


Automated Grammatical Error Detection For Language Learners Second Edition
DOWNLOAD

Download Automated Grammatical Error Detection For Language Learners Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automated Grammatical Error Detection For Language Learners Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Automated Grammatical Error Detection For Language Learners


Automated Grammatical Error Detection For Language Learners
DOWNLOAD
Author : Claudia Leacock
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2014-02-01

Automated Grammatical Error Detection For Language Learners written by Claudia Leacock and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-01 with Computers categories.


It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult: constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will continue to contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems.



Automated Grammatical Error Detection For Language Learners Second Edition


Automated Grammatical Error Detection For Language Learners Second Edition
DOWNLOAD
Author : Claudia Leacock
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Automated Grammatical Error Detection For Language Learners Second Edition written by Claudia Leacock and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult: constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will continue to contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems.



Automated Grammatical Error Detection For Language Learners


Automated Grammatical Error Detection For Language Learners
DOWNLOAD
Author : Claudia Leacock
language : en
Publisher: Springer Nature
Release Date : 2022-11-10

Automated Grammatical Error Detection For Language Learners written by Claudia Leacock and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-10 with Computers categories.


It has been estimated that over a billion people are using or learning English as a second or foreign language, and the numbers are growing not only for English but for other languages as well. These language learners provide a burgeoning market for tools that help identify and correct learners' writing errors. Unfortunately, the errors targeted by typical commercial proofreading tools do not include those aspects of a second language that are hardest to learn. This volume describes the types of constructions English language learners find most difficult -- constructions containing prepositions, articles, and collocations. It provides an overview of the automated approaches that have been developed to identify and correct these and other classes of learner errors in a number of languages. Error annotation and system evaluation are particularly important topics in grammatical error detection because there are no commonly accepted standards. Chapters in the book describe the options available to researchers, recommend best practices for reporting results, and present annotation and evaluation schemes. The final chapters explore recent innovative work that opens new directions for research. It is the authors' hope that this volume will contribute to the growing interest in grammatical error detection by encouraging researchers to take a closer look at the field and its many challenging problems. Table of Contents: Introduction / History of Automated Grammatical Error Detection / Special Problems of Language Learners / Language Learner Data / Evaluating Error Detection Systems / Article and Preposition Errors / Collocation Errors / Different Approaches for Different Errors / Annotating Learner Errors / New Directions / Conclusion



Automatic Text Simplification


Automatic Text Simplification
DOWNLOAD
Author : Horacio Saggion
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Automatic Text Simplification written by Horacio Saggion and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Thanks to the availability of texts on the Web in recent years, increased knowledge and information have been made available to broader audiences. However, the way in which a text is written—its vocabulary, its syntax—can be difficult to read and understand for many people, especially those with poor literacy, cognitive or linguistic impairment, or those with limited knowledge of the language of the text. Texts containing uncommon words or long and complicated sentences can be difficult to read and understand by people as well as difficult to analyze by machines. Automatic text simplification is the process of transforming a text into another text which, ideally conveying the same message, will be easier to read and understand by a broader audience. The process usually involves the replacement of difficult or unknown phrases with simpler equivalents and the transformation of long and syntactically complex sentences into shorter and less complex ones. Automatic text simplification, a research topic which started 20 years ago, now has taken on a central role in natural language processing research not only because of the interesting challenges it posesses but also because of its social implications. This book presents past and current research in text simplification, exploring key issues including automatic readability assessment, lexical simplification, and syntactic simplification. It also provides a detailed account of machine learning techniques currently used in simplification, describes full systems designed for specific languages and target audiences, and offers available resources for research and development together with text simplification evaluation techniques.



Grammatical Inference For Computational Linguistics


Grammatical Inference For Computational Linguistics
DOWNLOAD
Author : Jeffrey Heinz
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Grammatical Inference For Computational Linguistics written by Jeffrey Heinz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


This book provides a thorough introduction to the subfield of theoretical computer science known as grammatical inference from a computational linguistic perspective. Grammatical inference provides principled methods for developing computationally sound algorithms that learn structure from strings of symbols. The relationship to computational linguistics is natural because many research problems in computational linguistics are learning problems on words, phrases, and sentences: What algorithm can take as input some finite amount of data (for instance a corpus, annotated or otherwise) and output a system that behaves "correctly" on specific tasks? Throughout the text, the key concepts of grammatical inference are interleaved with illustrative examples drawn from problems in computational linguistics. Special attention is paid to the notion of "learning bias." In the context of computational linguistics, such bias can be thought to reflect common (ideally universal) properties of natural languages. This bias can be incorporated either by identifying a learnable class of languages which contains the language to be learned or by using particular strategies for optimizing parameter values. Examples are drawn largely from two linguistic domains (phonology and syntax) which span major regions of the Chomsky Hierarchy (from regular to context-sensitive classes). The conclusion summarizes the major lessons and open questions that grammatical inference brings to computational linguistics. Table of Contents: List of Figures / List of Tables / Preface / Studying Learning / Formal Learning / Learning Regular Languages / Learning Non-Regular Languages / Lessons Learned and Open Problems / Bibliography / Author Biographies



Learning To Rank For Information Retrieval And Natural Language Processing Second Edition


Learning To Rank For Information Retrieval And Natural Language Processing Second Edition
DOWNLOAD
Author : Hang Li
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Learning To Rank For Information Retrieval And Natural Language Processing Second Edition written by Hang Li and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank is useful for many applications in information retrieval, natural language processing, and data mining. Intensive studies have been conducted on its problems recently, and significant progress has been made. This lecture gives an introduction to the area including the fundamental problems, major approaches, theories, applications, and future work. The author begins by showing that various ranking problems in information retrieval and natural language processing can be formalized as two basic ranking tasks, namely ranking creation (or simply ranking) and ranking aggregation. In ranking creation, given a request, one wants to generate a ranking list of offerings based on the features derived from the request and the offerings. In ranking aggregation, given a request, as well as a number of ranking lists of offerings, one wants to generate a new ranking list of the offerings. Ranking creation (or ranking) is the major problem in learning to rank. It is usually formalized as a supervised learning task. The author gives detailed explanations on learning for ranking creation and ranking aggregation, including training and testing, evaluation, feature creation, and major approaches. Many methods have been proposed for ranking creation. The methods can be categorized as the pointwise, pairwise, and listwise approaches according to the loss functions they employ. They can also be categorized according to the techniques they employ, such as the SVM based, Boosting based, and Neural Network based approaches. The author also introduces some popular learning to rank methods in details. These include: PRank, OC SVM, McRank, Ranking SVM, IR SVM, GBRank, RankNet, ListNet & ListMLE, AdaRank, SVM MAP, SoftRank, LambdaRank, LambdaMART, Borda Count, Markov Chain, and CRanking. The author explains several example applications of learning to rank including web search, collaborative filtering, definition search, keyphrase extraction, query dependent summarization, and re-ranking in machine translation. A formulation of learning for ranking creation is given in the statistical learning framework. Ongoing and future research directions for learning to rank are also discussed. Table of Contents: Learning to Rank / Learning for Ranking Creation / Learning for Ranking Aggregation / Methods of Learning to Rank / Applications of Learning to Rank / Theory of Learning to Rank / Ongoing and Future Work



Natural Language Processing For Social Media Second Edition


Natural Language Processing For Social Media Second Edition
DOWNLOAD
Author : Atefeh Farzindar
language : en
Publisher: Springer Nature
Release Date : 2017-12-15

Natural Language Processing For Social Media Second Edition written by Atefeh Farzindar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-15 with Computers categories.


In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, healthcare, business intelligence, industry, marketing, and security and defence. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, virtual reality, and social networking. In this second edition, we have added information about recent progress in the tasks and applications presented in the first edition. We discuss new methods and their results. The number of research projects and publications that use social media data is constantly increasing due to continuously growing amounts of social media data and the need to automatically process them. We have added 85 new references to the more than 300 references from the first edition. Besides updating each section, we have added a new application (digital marketing) to the section on media monitoring and we have augmented the section on healthcare applications with an extended discussion of recent research on detecting signs of mental illness from social media.



Embeddings In Natural Language Processing


Embeddings In Natural Language Processing
DOWNLOAD
Author : Mohammad Taher Pilehvar
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Embeddings In Natural Language Processing written by Mohammad Taher Pilehvar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.



Explainable Natural Language Processing


Explainable Natural Language Processing
DOWNLOAD
Author : Anders Søgaard
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Explainable Natural Language Processing written by Anders Søgaard and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


This book presents a taxonomy framework and survey of methods relevant to explaining the decisions and analyzing the inner workings of Natural Language Processing (NLP) models. The book is intended to provide a snapshot of Explainable NLP, though the field continues to rapidly grow. The book is intended to be both readable by first-year M.Sc. students and interesting to an expert audience. The book opens by motivating a focus on providing a consistent taxonomy, pointing out inconsistencies and redundancies in previous taxonomies. It goes on to present (i) a taxonomy or framework for thinking about how approaches to explainable NLP relate to one another; (ii) brief surveys of each of the classes in the taxonomy, with a focus on methods that are relevant for NLP; and (iii) a discussion of the inherent limitations of some classes of methods, as well as how to best evaluate them. Finally, the book closes by providing a list of resources for further research on explainability.



Linguistic Fundamentals For Natural Language Processing Ii


Linguistic Fundamentals For Natural Language Processing Ii
DOWNLOAD
Author : Emily M. Bender
language : en
Publisher: Springer Nature
Release Date : 2022-06-01

Linguistic Fundamentals For Natural Language Processing Ii written by Emily M. Bender and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.


Meaning is a fundamental concept in Natural Language Processing (NLP), in the tasks of both Natural Language Understanding (NLU) and Natural Language Generation (NLG). This is because the aims of these fields are to build systems that understand what people mean when they speak or write, and that can produce linguistic strings that successfully express to people the intended content. In order for NLP to scale beyond partial, task-specific solutions, researchers in these fields must be informed by what is known about how humans use language to express and understand communicative intents. The purpose of this book is to present a selection of useful information about semantics and pragmatics, as understood in linguistics, in a way that's accessible to and useful for NLP practitioners with minimal (or even no) prior training in linguistics.