Automated Machine Learning On Aws

DOWNLOAD
Download Automated Machine Learning On Aws PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automated Machine Learning On Aws book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Automated Machine Learning On Aws
DOWNLOAD
Author : Trenton Potgieter
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-04-15
Automated Machine Learning On Aws written by Trenton Potgieter and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-15 with Computers categories.
Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more Key FeaturesExplore the various AWS services that make automated machine learning easierRecognize the role of DevOps and MLOps methodologies in pipeline automationGet acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challengesBook Description AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production. What you will learnEmploy SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning processUnderstand how to use AutoGluon to automate complicated model building tasksUse the AWS CDK to codify the machine learning processCreate, deploy, and rebuild a CI/CD pipeline on AWSBuild an ML workflow using AWS Step Functions and the Data Science SDKLeverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC)Discover how to use Amazon MWAA for a data-centric ML processWho this book is for This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book.
Automated Machine Learning On Aws
DOWNLOAD
Author : Trenton Potgieter
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-04-15
Automated Machine Learning On Aws written by Trenton Potgieter and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-15 with Computers categories.
Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more Key FeaturesExplore the various AWS services that make automated machine learning easierRecognize the role of DevOps and MLOps methodologies in pipeline automationGet acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challengesBook Description AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production. What you will learnEmploy SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning processUnderstand how to use AutoGluon to automate complicated model building tasksUse the AWS CDK to codify the machine learning processCreate, deploy, and rebuild a CI/CD pipeline on AWSBuild an ML workflow using AWS Step Functions and the Data Science SDKLeverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC)Discover how to use Amazon MWAA for a data-centric ML processWho this book is for This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book.
Automated Machine Learning
DOWNLOAD
Author : Adnan Masood
language : en
Publisher: Packt Publishing
Release Date : 2021-02-18
Automated Machine Learning written by Adnan Masood and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-18 with categories.
Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key Features: Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice Eliminate mundane tasks in data engineering and reduce human errors in machine learning models Find out how you can make machine learning accessible for all users to promote decentralized processes Book Description: Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you'll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you'll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What You Will Learn: Explore AutoML fundamentals, underlying methods, and techniques Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario Find out the difference between cloud and operations support systems (OSS) Implement AutoML in enterprise cloud to deploy ML models and pipelines Build explainable AutoML pipelines with transparency Understand automated feature engineering and time series forecasting Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems Who this book is for: Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.
Automated Machine Learning
DOWNLOAD
Author : Adnan Masood
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-18
Automated Machine Learning written by Adnan Masood and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-18 with Computers categories.
Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key FeaturesGet up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choiceEliminate mundane tasks in data engineering and reduce human errors in machine learning modelsFind out how you can make machine learning accessible for all users to promote decentralized processesBook Description Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learnExplore AutoML fundamentals, underlying methods, and techniquesAssess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenarioFind out the difference between cloud and operations support systems (OSS)Implement AutoML in enterprise cloud to deploy ML models and pipelinesBuild explainable AutoML pipelines with transparencyUnderstand automated feature engineering and time series forecastingAutomate data science modeling tasks to implement ML solutions easily and focus on more complex problemsWho this book is for Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.
Practical Automated Machine Learning Using H2o Ai
DOWNLOAD
Author : Salil Ajgaonkar
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-09-26
Practical Automated Machine Learning Using H2o Ai written by Salil Ajgaonkar and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-26 with Computers categories.
Accelerate the adoption of machine learning by automating away the complex parts of the ML pipeline using H2O.ai Key FeaturesLearn how to train the best models with a single click using H2O AutoMLGet a simple explanation of model performance using H2O ExplainabilityEasily deploy your trained models to production using H2O MOJO and POJOBook Description With the huge amount of data being generated over the internet and the benefits that Machine Learning (ML) predictions bring to businesses, ML implementation has become a low-hanging fruit that everyone is striving for. The complex mathematics behind it, however, can be discouraging for a lot of users. This is where H2O comes in – it automates various repetitive steps, and this encapsulation helps developers focus on results rather than handling complexities. You'll begin by understanding how H2O's AutoML simplifies the implementation of ML by providing a simple, easy-to-use interface to train and use ML models. Next, you'll see how AutoML automates the entire process of training multiple models, optimizing their hyperparameters, as well as explaining their performance. As you advance, you'll find out how to leverage a Plain Old Java Object (POJO) and Model Object, Optimized (MOJO) to deploy your models to production. Throughout this book, you'll take a hands-on approach to implementation using H2O that'll enable you to set up your ML systems in no time. By the end of this H2O book, you'll be able to train and use your ML models using H2O AutoML, right from experimentation all the way to production without a single need to understand complex statistics or data science. What you will learnGet to grips with H2O AutoML and learn how to use itExplore the H2O Flow Web UIUnderstand how H2O AutoML trains the best models and automates hyperparameter optimizationFind out how H2O Explainability helps understand model performanceExplore H2O integration with scikit-learn, the Spring Framework, and Apache StormDiscover how to use H2O with Spark using H2O Sparkling WaterWho this book is for This book is for engineers and data scientists who want to quickly adopt machine learning into their products without worrying about the internal intricacies of training ML models. If you're someone who wants to incorporate machine learning into your software system but don't know where to start or don't have much expertise in the domain of ML, then you'll find this book useful. Basic knowledge of statistics and programming is beneficial. Some understanding of ML and Python will be helpful.
Automated Machine Learning With Autokeras
DOWNLOAD
Author : Luis Sobrecueva
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-05-21
Automated Machine Learning With Autokeras written by Luis Sobrecueva and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-21 with Computers categories.
Create better and easy-to-use deep learning models with AutoKeras Key FeaturesDesign and implement your own custom machine learning models using the features of AutoKerasLearn how to use AutoKeras for techniques such as classification, regression, and sentiment analysisGet familiar with advanced concepts as multi-modal, multi-task, and search space customizationBook Description AutoKeras is an AutoML open-source software library that provides easy access to deep learning models. If you are looking to build deep learning model architectures and perform parameter tuning automatically using AutoKeras, then this book is for you. This book teaches you how to develop and use state-of-the-art AI algorithms in your projects. It begins with a high-level introduction to automated machine learning, explaining all the concepts required to get started with this machine learning approach. You will then learn how to use AutoKeras for image and text classification and regression. As you make progress, you'll discover how to use AutoKeras to perform sentiment analysis on documents. This book will also show you how to implement a custom model for topic classification with AutoKeras. Toward the end, you will explore advanced concepts of AutoKeras such as working with multi-modal data and multi-task, customizing the model with AutoModel, and visualizing experiment results using AutoKeras Extensions. By the end of this machine learning book, you will be able to confidently use AutoKeras to design your own custom machine learning models in your company. What you will learnSet up a deep learning workstation with TensorFlow and AutoKerasAutomate a machine learning pipeline with AutoKerasCreate and implement image and text classifiers and regressors using AutoKerasUse AutoKeras to perform sentiment analysis of a text, classifying it as negative or positiveLeverage AutoKeras to classify documents by topicsMake the most of AutoKeras by using its most powerful extensionsWho this book is for This book is for machine learning and deep learning enthusiasts who want to apply automated ML techniques to their projects. Prior basic knowledge of Python programming and machine learning is expected to get the most out of this book.
Mastering Automated Machine Learning Concepts Tools And Techniques
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-17
Mastering Automated Machine Learning Concepts Tools And Techniques written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.
"Mastering Automated Machine Learning: Concepts, Tools, and Techniques" is an essential guide for anyone seeking to unlock the full potential of Automated Machine Learning (AutoML), a groundbreaking technology transforming the field of data science. By automating complex and time-consuming processes, AutoML is making machine learning more efficient and accessible to a broader range of professionals. This book offers an in-depth exploration of core principles, state-of-the-art methodologies, and the practical tools that define AutoML. From data preparation and feature engineering to model selection, tuning, and deployment, readers will acquire a thorough understanding of how AutoML streamlines the entire machine learning pipeline. Whether you're a data scientist, machine learning engineer, or software developer eager to harness the power of automation, "Mastering Automated Machine Learning" provides the insights you need to implement cutting-edge AutoML solutions. With practical examples and guidance on using Python-based frameworks, this book equips you to revolutionize your data science projects. Embrace the future of machine learning and optimize your workflows with "Mastering Automated Machine Learning: Concepts, Tools, and Techniques."
Machine Learning In The Cloud Comparing Google Cloud Aws And Azure Apis
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date :
Machine Learning In The Cloud Comparing Google Cloud Aws And Azure Apis written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
Unlock the full potential of machine learning with "Machine Learning in the Cloud: Comparing Google Cloud, AWS, and Azure APIs." This essential guide meticulously navigates through the intricate world of cloud-based ML APIs across the leading platforms—Google Cloud, AWS, and Azure. Whether you're a software developer, data scientist, IT professional, or business strategist, this book equips you with the knowledge to make informed decisions about implementing and managing these powerful tools in your projects. Dive deep into a comprehensive analysis and comparison of text processing, image recognition, speech recognition, and custom model building services offered by these giants. Understand the ins and outs of setting up, configuring, and optimizing these APIs for performance and scalability. Explore chapters dedicated to security, compliance, and real-life success stories that demonstrate the transformative impact of cloud-based ML across various industries. With practical guides, strategic insights, and current industry standards, this book is your roadmap to mastering cloud machine learning APIs, paving the way for innovative solutions that enhance competitiveness and efficiency. Embrace the future of artificial intelligence with this expertly crafted resource at your fingertips.
The Definitive Guide To Machine Learning Operations In Aws
DOWNLOAD
Author : Neel Sendas
language : en
Publisher: Springer Nature
Release Date : 2025-01-03
The Definitive Guide To Machine Learning Operations In Aws written by Neel Sendas and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-03 with Computers categories.
Foreword by Dr. Shreyas Subramanian, Principal Data Scientist, Amazon This book focuses on deploying, testing, monitoring, and automating ML systems in production. It covers AWS MLOps tools like Amazon SageMaker, Data Wrangler, and AWS Feature Store, along with best practices for operating ML systems on AWS. This book explains how to design, develop, and deploy ML workloads at scale using AWS cloud's well-architected pillars. It starts with an introduction to AWS services and MLOps tools, setting up the MLOps environment. It covers operational excellence, including CI/CD pipelines and Infrastructure as code. Security in MLOps, data privacy, IAM, and reliability with automated testing are discussed. Performance efficiency and cost optimization, like Right-sizing ML resources, are explored. The book concludes with MLOps best practices, MLOPS for GenAI, emerging trends, and future developments in MLOps By the end, readers will learn operating ML workloads on the AWS cloud. This book suits software developers, ML engineers, DevOps engineers, architects, and team leaders aspiring to be MLOps professionals on AWS. What you will learn: ● Create repeatable training workflows to accelerate model development ● Catalog ML artifacts centrally for model reproducibility and governance ● Integrate ML workflows with CI/CD pipelines for faster time to production ● Continuously monitor data and models in production to maintain quality ● Optimize model deployment for performance and cost Who this book is for: This book suits ML engineers, DevOps engineers, software developers, architects, and team leaders aspiring to be MLOps professionals on AWS.
Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17
Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.