[PDF] Automorphic Forms And Geometry Of Arithmetic Varieties - eBooks Review

Automorphic Forms And Geometry Of Arithmetic Varieties


Automorphic Forms And Geometry Of Arithmetic Varieties
DOWNLOAD

Download Automorphic Forms And Geometry Of Arithmetic Varieties PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automorphic Forms And Geometry Of Arithmetic Varieties book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Automorphic Forms And Geometry Of Arithmetic Varieties


Automorphic Forms And Geometry Of Arithmetic Varieties
DOWNLOAD
Author : K. Hashimoto
language : en
Publisher: Academic Press
Release Date : 2014-07-14

Automorphic Forms And Geometry Of Arithmetic Varieties written by K. Hashimoto and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-14 with Mathematics categories.


Automorphic Forms and Geometry of Arithmetic Varieties deals with the dimension formulas of various automorphic forms and the geometry of arithmetic varieties. The relation between two fundamental methods of obtaining dimension formulas (for cusp forms), the Selberg trace formula and the index theorem (Riemann-Roch's theorem and the Lefschetz fixed point formula), is examined. Comprised of 18 sections, this volume begins by discussing zeta functions associated with cones and their special values, followed by an analysis of cusps on Hilbert modular varieties and values of L-functions. The reader is then introduced to the dimension formula of Siegel modular forms; the graded rings of modular forms in several variables; and Selberg-Ihara's zeta function for p-adic discrete groups. Subsequent chapters focus on zeta functions of finite graphs and representations of p-adic groups; invariants and Hodge cycles; T-complexes and Ogata's zeta zero values; and the structure of the icosahedral modular group. This book will be a useful resource for mathematicians and students of mathematics.



P Adic Automorphic Forms On Shimura Varieties


P Adic Automorphic Forms On Shimura Varieties
DOWNLOAD
Author : Haruzo Hida
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-05-10

P Adic Automorphic Forms On Shimura Varieties written by Haruzo Hida and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-05-10 with Mathematics categories.


This book covers the following three topics in a manner accessible to graduate students who have an understanding of algebraic number theory and scheme theoretic algebraic geometry: 1. An elementary construction of Shimura varieties as moduli of abelian schemes. 2. p-adic deformation theory of automorphic forms on Shimura varieties. 3. A simple proof of irreducibility of the generalized Igusa tower over the Shimura variety. The book starts with a detailed study of elliptic and Hilbert modular forms and reaches to the forefront of research of Shimura varieties associated with general classical groups. The method of constructing p-adic analytic families and the proof of irreducibility was recently discovered by the author. The area covered in this book is now a focal point of research worldwide with many far-reaching applications that have led to solutions of longstanding problems and conjectures. Specifically, the use of p-adic elliptic and Hilbert modular forms have proven essential in recent breakthroughs in number theory (for example, the proof of Fermat's Last Theorem and the Shimura-Taniyama conjecture by A. Wiles and others). Haruzo Hida is Professor of Mathematics at University of California, Los Angeles. His previous books include Modular Forms and Galois Cohomology (Cambridge University Press 2000) and Geometric Modular Forms and Elliptic Curves (World Scientific Publishing Company 2000).



Cohomology Of Arithmetic Groups And Automorphic Forms


Cohomology Of Arithmetic Groups And Automorphic Forms
DOWNLOAD
Author : Jean-Pierre Labesse
language : en
Publisher: Springer
Release Date : 2006-11-14

Cohomology Of Arithmetic Groups And Automorphic Forms written by Jean-Pierre Labesse and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.


Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.



Arithmetic Of Higher Dimensional Algebraic Varieties


Arithmetic Of Higher Dimensional Algebraic Varieties
DOWNLOAD
Author : Bjorn Poonen
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Arithmetic Of Higher Dimensional Algebraic Varieties written by Bjorn Poonen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and étale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry.



Automorphic Forms And Zeta Functions Proceedings Of The Conference In Memory Of Tsuneo Arakawa


Automorphic Forms And Zeta Functions Proceedings Of The Conference In Memory Of Tsuneo Arakawa
DOWNLOAD
Author : Masanobu Kaneko
language : en
Publisher: World Scientific
Release Date : 2006-01-03

Automorphic Forms And Zeta Functions Proceedings Of The Conference In Memory Of Tsuneo Arakawa written by Masanobu Kaneko and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-03 with Mathematics categories.


This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works.This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions.



Automorphic Forms And Zeta Functions


Automorphic Forms And Zeta Functions
DOWNLOAD
Author : Siegfried B”cherer
language : en
Publisher: World Scientific
Release Date : 2006

Automorphic Forms And Zeta Functions written by Siegfried B”cherer and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Science categories.


This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L-functions, many of which are closely related to Arakawa's works. This collection of papers illustrates Arakawa's contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operator (H Aoki); Marsden-Weinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S Bocherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K Hashimoto); Skewholomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O(2n)/(O(n) x O(n)) (Y Hironaka & F Sati); Koecher-Maa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L-Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L-Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp(1,q) (Arakawa's Results and Recent Progress) (H Narita); On Modular Forms for the Paramodular Group (B Roberts & R Schmidt); SL(2,Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics.



Introduction To The Arithmetic Theory Of Automorphic Functions


Introduction To The Arithmetic Theory Of Automorphic Functions
DOWNLOAD
Author : Gorō Shimura
language : en
Publisher: Princeton University Press
Release Date : 1971-08-21

Introduction To The Arithmetic Theory Of Automorphic Functions written by Gorō Shimura and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1971-08-21 with Mathematics categories.


The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.



Automorphic Forms And Related Geometry Assessing The Legacy Of I I Piatetski Shapiro


Automorphic Forms And Related Geometry Assessing The Legacy Of I I Piatetski Shapiro
DOWNLOAD
Author : James W. Cogdell
language : en
Publisher: American Mathematical Soc.
Release Date : 2014-04-01

Automorphic Forms And Related Geometry Assessing The Legacy Of I I Piatetski Shapiro written by James W. Cogdell and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-01 with Mathematics categories.


This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promise for future development: functoriality and converse theorems; local and global -functions and their periods; -adic -functions and arithmetic geometry; complex geometry; and analytic number theory. In each area, there were talks to review the current state of affairs with special attention to Piatetski-Shapiro's contributions, and other talks to report on current work and to outline promising avenues for continued progress. The contents of this volume reflect most of the talks that were presented at the conference as well as a few additional contributions. They all represent various aspects of the legacy of Piatetski-Shapiro.



Contributions To Automorphic Forms Geometry And Number Theory


Contributions To Automorphic Forms Geometry And Number Theory
DOWNLOAD
Author : Haruzo Hida
language : en
Publisher: JHU Press
Release Date : 2004-03-11

Contributions To Automorphic Forms Geometry And Number Theory written by Haruzo Hida and has been published by JHU Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-11 with Mathematics categories.


In Contributions to Automorphic Forms, Geometry, and Number Theory, Haruzo Hida, Dinakar Ramakrishnan, and Freydoon Shahidi bring together a distinguished group of experts to explore automorphic forms, principally via the associated L-functions, representation theory, and geometry. Because these themes are at the cutting edge of a central area of modern mathematics, and are related to the philosophical base of Wiles' proof of Fermat's last theorem, this book will be of interest to working mathematicians and students alike. Never previously published, the contributions to this volume expose the reader to a host of difficult and thought-provoking problems. Each of the extraordinary and noteworthy mathematicians in this volume makes a unique contribution to a field that is currently seeing explosive growth. New and powerful results are being proved, radically and continually changing the field's make up. Contributions to Automorphic Forms, Geometry, and Number Theory will likely lead to vital interaction among researchers and also help prepare students and other young mathematicians to enter this exciting area of pure mathematics. Contributors: Jeffrey Adams, Jeffrey D. Adler, James Arthur, Don Blasius, Siegfried Boecherer, Daniel Bump, William Casselmann, Laurent Clozel, James Cogdell, Laurence Corwin, Solomon Friedberg, Masaaki Furusawa, Benedict Gross, Thomas Hales, Joseph Harris, Michael Harris, Jeffrey Hoffstein, Hervé Jacquet, Dihua Jiang, Nicholas Katz, Henry Kim, Victor Kreiman, Stephen Kudla, Philip Kutzko, V. Lakshmibai, Robert Langlands, Erez Lapid, Ilya Piatetski-Shapiro, Dipendra Prasad, Stephen Rallis, Dinakar Ramakrishnan, Paul Sally, Freydoon Shahidi, Peter Sarnak, Rainer Schulze-Pillot, Joseph Shalika, David Soudry, Ramin Takloo-Bigash, Yuri Tschinkel, Emmanuel Ullmo, Marie-France Vignéras, Jean-Loup Waldspurger.



Relative Aspects In Representation Theory Langlands Functoriality And Automorphic Forms


Relative Aspects In Representation Theory Langlands Functoriality And Automorphic Forms
DOWNLOAD
Author : Volker Heiermann
language : en
Publisher: Springer
Release Date : 2018-10-01

Relative Aspects In Representation Theory Langlands Functoriality And Automorphic Forms written by Volker Heiermann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-01 with Mathematics categories.


This volume presents a panorama of the diverse activities organized by V. Heiermann and D. Prasad in Marseille at the CIRM for the Chaire Morlet event during the first semester of 2016. It assembles together expository articles on topics which previously could only be found in research papers. Starting with a very detailed article by P. Baumann and S. Riche on the geometric Satake correspondence, the book continues with three introductory articles on distinguished representations due to P. Broussous, F. Murnaghan, and O. Offen; an expository article of I. Badulescu on the Jacquet–Langlands correspondence; a paper of J. Arthur on functoriality and the trace formula in the context of "Beyond Endoscopy", taken from the Simons Proceedings; an article of W-W. Li attempting to generalize Godement–Jacquet theory; and a research paper of C. Moeglin and D. Renard, applying the trace formula to the local Langlands classification for classical groups. The book should be of interest to students as well as professional researchers working in the broad area of number theory and representation theory.