[PDF] Backward Simulation Methods For Monte Carlo Statistical Inference - eBooks Review

Backward Simulation Methods For Monte Carlo Statistical Inference


Backward Simulation Methods For Monte Carlo Statistical Inference
DOWNLOAD

Download Backward Simulation Methods For Monte Carlo Statistical Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Backward Simulation Methods For Monte Carlo Statistical Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Backward Simulation Methods For Monte Carlo Statistical Inference


Backward Simulation Methods For Monte Carlo Statistical Inference
DOWNLOAD
Author : Fredrik Lindsten
language : en
Publisher:
Release Date : 2013

Backward Simulation Methods For Monte Carlo Statistical Inference written by Fredrik Lindsten and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Digital computer simulation categories.


Backward Simulation Methods for Monte Carlo Statistical Inference presents and discusses various backward simulation methods for Monte Carlo statistical inference. The focus is on SMC-based backward simulators, which are useful for inference in analytically intractable models, such as nonlinear and/or non-Gaussian SSMs, but also in more general latent variable models.



Accelerating Monte Carlo Methods For Bayesian Inference In Dynamical Models


Accelerating Monte Carlo Methods For Bayesian Inference In Dynamical Models
DOWNLOAD
Author : Johan Dahlin
language : en
Publisher: Linköping University Electronic Press
Release Date : 2016-03-22

Accelerating Monte Carlo Methods For Bayesian Inference In Dynamical Models written by Johan Dahlin and has been published by Linköping University Electronic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-22 with categories.


Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.



Nonlinear Time Series


Nonlinear Time Series
DOWNLOAD
Author : Randal Douc
language : en
Publisher: CRC Press
Release Date : 2014-01-06

Nonlinear Time Series written by Randal Douc and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-06 with Mathematics categories.


Designed for researchers and students, Nonlinear Times Series: Theory, Methods and Applications with R Examples familiarizes readers with the principles behind nonlinear time series models—without overwhelming them with difficult mathematical developments. By focusing on basic principles and theory, the authors give readers the background required to craft their own stochastic models, numerical methods, and software. They will also be able to assess the advantages and disadvantages of different approaches, and thus be able to choose the right methods for their purposes. The first part can be seen as a crash course on "classical" time series, with a special emphasis on linear state space models and detailed coverage of random coefficient autoregressions, both ARCH and GARCH models. The second part introduces Markov chains, discussing stability, the existence of a stationary distribution, ergodicity, limit theorems, and statistical inference. The book concludes with a self-contained account on nonlinear state space and sequential Monte Carlo methods. An elementary introduction to nonlinear state space modeling and sequential Monte Carlo, this section touches on current topics, from the theory of statistical inference to advanced computational methods. The book can be used as a support to an advanced course on these methods, or an introduction to this field before studying more specialized texts. Several chapters highlight recent developments such as explicit rate of convergence of Markov chains and sequential Monte Carlo techniques. And while the chapters are organized in a logical progression, the three parts can be studied independently. Statistics is not a spectator sport, so the book contains more than 200 exercises to challenge readers. These problems strengthen intellectual muscles strained by the introduction of new theory and go on to extend the theory in significant ways. The book helps readers hone their skills in nonlinear time series analysis and their applications.



Bayesian Filtering And Smoothing


Bayesian Filtering And Smoothing
DOWNLOAD
Author : Simo Särkkä
language : en
Publisher: Cambridge University Press
Release Date : 2023-06-15

Bayesian Filtering And Smoothing written by Simo Särkkä and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-06-15 with Mathematics categories.


A Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.



Monte Carlo Methods


Monte Carlo Methods
DOWNLOAD
Author : Neal Noah Madras
language : en
Publisher: American Mathematical Soc.
Release Date : 2000

Monte Carlo Methods written by Neal Noah Madras and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.


This volume contains the proceedings of the Workshop on Monte Carlo Methods held at The Fields Institute for Research in Mathematical Sciences (Toronto, 1998). The workshop brought together researchers in physics, statistics, and probability. The papers in this volume - of the invited speakers and contributors to the poster session - represent the interdisciplinary emphasis of the conference. Monte Carlo methods have been used intensively in many branches of scientific inquiry. Markov chain methods have been at the forefront of much of this work, serving as the basis of many numerical studies in statistical physics and related areas since the Metropolis algorithm was introduced in 1953. Statisticians and theoretical computer scientists have used these methods in recent years, working on different fundamental research questions, yet using similar Monte Carlo methodology. This volume focuses on Monte Carlo methods that appear to have wide applicability and emphasizes new methods, practical applications and theoretical analysis. It will be of interest to researchers and graduate students who study and/or use Monte Carlo methods in areas of probability, statistics, theoretical physics, or computer science.



Statistical Inference And Simulation For Spatial Point Processes


Statistical Inference And Simulation For Spatial Point Processes
DOWNLOAD
Author : Jesper Moller
language : en
Publisher: CRC Press
Release Date : 2003-09-25

Statistical Inference And Simulation For Spatial Point Processes written by Jesper Moller and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-09-25 with Mathematics categories.


Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.



Mean Field Simulation For Monte Carlo Integration


Mean Field Simulation For Monte Carlo Integration
DOWNLOAD
Author : Pierre Del Moral
language : en
Publisher: CRC Press
Release Date : 2013-05-20

Mean Field Simulation For Monte Carlo Integration written by Pierre Del Moral and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-20 with Mathematics categories.


This book presents the first comprehensive and modern mathematical treatment of these mean field particle models, including refined convergence analysis on nonlinear Markov chain models. It also covers applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology.



Monte Carlo Simulation


Monte Carlo Simulation
DOWNLOAD
Author : Christopher Z. Mooney
language : en
Publisher: SAGE
Release Date : 1997-04-07

Monte Carlo Simulation written by Christopher Z. Mooney and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-04-07 with Mathematics categories.


Aimed at researchers across the social sciences, this book explains the logic behind the Monte Carlo simulation method and demonstrates its uses for social and behavioural research.



Monte Carlo Methods And Stochastic Processes


Monte Carlo Methods And Stochastic Processes
DOWNLOAD
Author : Emmanuel Gobet
language : en
Publisher: CRC Press
Release Date : 2016-09-15

Monte Carlo Methods And Stochastic Processes written by Emmanuel Gobet and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-15 with Mathematics categories.


Developed from the author’s course at the Ecole Polytechnique, Monte-Carlo Methods and Stochastic Processes: From Linear to Non-Linear focuses on the simulation of stochastic processes in continuous time and their link with partial differential equations (PDEs). It covers linear and nonlinear problems in biology, finance, geophysics, mechanics, chemistry, and other application areas. The text also thoroughly develops the problem of numerical integration and computation of expectation by the Monte-Carlo method. The book begins with a history of Monte-Carlo methods and an overview of three typical Monte-Carlo problems: numerical integration and computation of expectation, simulation of complex distributions, and stochastic optimization. The remainder of the text is organized in three parts of progressive difficulty. The first part presents basic tools for stochastic simulation and analysis of algorithm convergence. The second part describes Monte-Carlo methods for the simulation of stochastic differential equations. The final part discusses the simulation of non-linear dynamics.