[PDF] Bandit Algorithms For Website Optimization - eBooks Review

Bandit Algorithms For Website Optimization


Bandit Algorithms For Website Optimization
DOWNLOAD

Download Bandit Algorithms For Website Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bandit Algorithms For Website Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Bandit Algorithms For Website Optimization


Bandit Algorithms For Website Optimization
DOWNLOAD
Author : John Myles White
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2012-12-10

Bandit Algorithms For Website Optimization written by John Myles White and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-10 with Computers categories.


When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You’ll quickly learn the benefits of several simple algorithms—including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms—by working through code examples written in Python, which you can easily adapt for deployment on your own website. Learn the basics of A/B testing—and recognize when it’s better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials



Bandit Algorithms For Website Optimization


Bandit Algorithms For Website Optimization
DOWNLOAD
Author : John Myles White
language : en
Publisher:
Release Date : 2012

Bandit Algorithms For Website Optimization written by John Myles White and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computer algorithms categories.




Bandit Algorithms For Website Optimization


Bandit Algorithms For Website Optimization
DOWNLOAD
Author : John White
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013

Bandit Algorithms For Website Optimization written by John White and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Computers categories.


When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You’ll quickly learn the benefits of several simple algorithms—including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms—by working through code examples written in Python, which you can easily adapt for deployment on your own website. Learn the basics of A/B testing—and recognize when it’s better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials



Bandit Algorithms


Bandit Algorithms
DOWNLOAD
Author : Tor Lattimore
language : en
Publisher: Cambridge University Press
Release Date : 2020-07-16

Bandit Algorithms written by Tor Lattimore and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-16 with Business & Economics categories.


A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.



Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems


Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems
DOWNLOAD
Author : Sébastien Bubeck
language : en
Publisher: Now Pub
Release Date : 2012

Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems written by Sébastien Bubeck and has been published by Now Pub this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.


In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it analyzes some of the most important variants and extensions, such as the contextual bandit model.



Machine Learning For Hackers


Machine Learning For Hackers
DOWNLOAD
Author : Drew Conway
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2012-02-13

Machine Learning For Hackers written by Drew Conway and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-13 with Computers categories.


If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data



Automated Machine Learning


Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17

Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.


This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.



Mastering Reinforcement Learning With Python


Mastering Reinforcement Learning With Python
DOWNLOAD
Author : Enes Bilgin
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-12-18

Mastering Reinforcement Learning With Python written by Enes Bilgin and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-18 with Computers categories.


Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices Key FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook Description Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems. What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is for This book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.



Practical Statistics For Data Scientists


Practical Statistics For Data Scientists
DOWNLOAD
Author : Peter Bruce
language : en
Publisher: O'Reilly Media
Release Date : 2020-04-10

Practical Statistics For Data Scientists written by Peter Bruce and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Computers categories.


Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher-quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that "learn" from data Unsupervised learning methods for extracting meaning from unlabeled data



Wireless Algorithms Systems And Applications


Wireless Algorithms Systems And Applications
DOWNLOAD
Author : Zhe Liu
language : en
Publisher: Springer Nature
Release Date : 2021-09-08

Wireless Algorithms Systems And Applications written by Zhe Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-08 with Computers categories.


The three-volume set constitutes the proceedings of the 16th International Conference on Wireless Algorithms, Systems, and Applications, WASA 2021, which was held during June 25-27, 2021. The conference took place in Nanjing, China.The 103 full and 57 short papers presented in these proceedings were carefully reviewed and selected from 315 submissions. The contributions in Part II of the set are subdivided into the following topical sections: Scheduling & Optimization II; Security; Data Center Networks and Cloud Computing; Privacy-Aware Computing; Internet of Vehicles; Visual Computing for IoT; Mobile Ad-Hoc Networks.