Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems

DOWNLOAD
Download Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems
DOWNLOAD
Author : Sébastien Bubeck
language : en
Publisher: Now Pub
Release Date : 2012
Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems written by Sébastien Bubeck and has been published by Now Pub this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it analyzes some of the most important variants and extensions, such as the contextual bandit model.
Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems
DOWNLOAD
Author : Sébastien Bubeck
language : en
Publisher:
Release Date : 2012
Regret Analysis Of Stochastic And Nonstochastic Multi Armed Bandit Problems written by Sébastien Bubeck and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Artificial intelligence categories.
Multi-armed bandit problems are the most basic examples of sequential decision problems with an exploration-exploitation trade-off. This is the balance between staying with the option that gave highest payoffs in the past and exploring new options that might give higher payoffs in the future. In this monograph, the focus is on two extreme cases in which the analysis of regret is particularly simple and elegant: independent and identically distributed payoffs and adversarial payoffs. Besides the basic setting of finitely many actions, it also analyzes some of the most important variants and extensions, such as the contextual bandit model.
Algorithmic Learning Theory
DOWNLOAD
Author : Ricard Gavaldà
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-09-21
Algorithmic Learning Theory written by Ricard Gavaldà and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-21 with Computers categories.
This book constitutes the refereed proceedings of the 20th International Conference on Algorithmic Learning Theory, ALT 2009, held in Porto, Portugal, in October 2009, co-located with the 12th International Conference on Discovery Science, DS 2009. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 60 submissions. The papers are divided into topical sections of papers on online learning, learning graphs, active learning and query learning, statistical learning, inductive inference, and semisupervised and unsupervised learning. The volume also contains abstracts of the invited talks: Sanjoy Dasgupta, The Two Faces of Active Learning; Hector Geffner, Inference and Learning in Planning; Jiawei Han, Mining Heterogeneous; Information Networks By Exploring the Power of Links, Yishay Mansour, Learning and Domain Adaptation; Fernando C.N. Pereira, Learning on the Web.
Introduction To Multi Armed Bandits
DOWNLOAD
Author : Aleksandrs Slivkins
language : en
Publisher:
Release Date : 2019
Introduction To Multi Armed Bandits written by Aleksandrs Slivkins and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Multi-armed bandits is a rich, multi-disciplinary area that has been studied since 1933, with a surge of activity in the past 10-15 years. This is the first book to provide a textbook like treatment of the subject.
Bandit Algorithms
DOWNLOAD
Author : Tor Lattimore
language : en
Publisher: Cambridge University Press
Release Date : 2020-07-16
Bandit Algorithms written by Tor Lattimore and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-16 with Business & Economics categories.
A comprehensive and rigorous introduction for graduate students and researchers, with applications in sequential decision-making problems.
Prediction Learning And Games
DOWNLOAD
Author : Nicolo Cesa-Bianchi
language : en
Publisher: Cambridge University Press
Release Date : 2006-03-13
Prediction Learning And Games written by Nicolo Cesa-Bianchi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-13 with Computers categories.
This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.
Bandit Problems
DOWNLOAD
Author : Donald A. Berry
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-04-17
Bandit Problems written by Donald A. Berry and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-17 with Science categories.
Our purpose in writing this monograph is to give a comprehensive treatment of the subject. We define bandit problems and give the necessary foundations in Chapter 2. Many of the important results that have appeared in the literature are presented in later chapters; these are interspersed with new results. We give proofs unless they are very easy or the result is not used in the sequel. We have simplified a number of arguments so many of the proofs given tend to be conceptual rather than calculational. All results given have been incorporated into our style and notation. The exposition is aimed at a variety of types of readers. Bandit problems and the associated mathematical and technical issues are developed from first principles. Since we have tried to be comprehens ive the mathematical level is sometimes advanced; for example, we use measure-theoretic notions freely in Chapter 2. But the mathema tically uninitiated reader can easily sidestep such discussion when it occurs in Chapter 2 and elsewhere. We have tried to appeal to graduate students and professionals in engineering, biometry, econ omics, management science, and operations research, as well as those in mathematics and statistics. The monograph could serve as a reference for professionals or as a telA in a semester or year-long graduate level course.
Optimization For Machine Learning
DOWNLOAD
Author : Suvrit Sra
language : en
Publisher: MIT Press
Release Date : 2012
Optimization For Machine Learning written by Suvrit Sra and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Computers categories.
An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.
Decision Making Under Uncertainty And Reinforcement Learning
DOWNLOAD
Author : Christos Dimitrakakis
language : en
Publisher: Springer Nature
Release Date : 2022-12-02
Decision Making Under Uncertainty And Reinforcement Learning written by Christos Dimitrakakis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-02 with Technology & Engineering categories.
This book presents recent research in decision making under uncertainty, in particular reinforcement learning and learning with expert advice. The core elements of decision theory, Markov decision processes and reinforcement learning have not been previously collected in a concise volume. Our aim with this book was to provide a solid theoretical foundation with elementary proofs of the most important theorems in the field, all collected in one place, and not typically found in introductory textbooks. This book is addressed to graduate students that are interested in statistical decision making under uncertainty and the foundations of reinforcement learning.