Bayesian Data Analysis In Ecology Using Linear Models With R Bugs And Stan Including Comparisons To Frequentist Statistics

DOWNLOAD
Download Bayesian Data Analysis In Ecology Using Linear Models With R Bugs And Stan Including Comparisons To Frequentist Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Data Analysis In Ecology Using Linear Models With R Bugs And Stan Including Comparisons To Frequentist Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Data Analysis In Ecology Using Linear Models With R Bugs And Stan
DOWNLOAD
Author : Franzi Korner-Nievergelt
language : en
Publisher: Academic Press
Release Date : 2015-04-04
Bayesian Data Analysis In Ecology Using Linear Models With R Bugs And Stan written by Franzi Korner-Nievergelt and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-04 with Science categories.
Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco
Bayesian Data Analysis In Ecology Using Linear Models With R Bugs And Stan Including Comparisons To Frequentist Statistics
DOWNLOAD
Author :
language : en
Publisher:
Release Date :
Bayesian Data Analysis In Ecology Using Linear Models With R Bugs And Stan Including Comparisons To Frequentist Statistics written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with Bayesian statistical decision theory categories.
Bayesian Models For Astrophysical Data
DOWNLOAD
Author : Joseph M. Hilbe
language : en
Publisher: Cambridge University Press
Release Date : 2017-04-27
Bayesian Models For Astrophysical Data written by Joseph M. Hilbe and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-27 with Mathematics categories.
A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types.
Introduction To Winbugs For Ecologists
DOWNLOAD
Author : Marc Kéry
language : en
Publisher: Academic Press
Release Date : 2010-07-19
Introduction To Winbugs For Ecologists written by Marc Kéry and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-19 with Science categories.
Introduction to WinBUGS for Ecologists introduces applied Bayesian modeling to ecologists using the highly acclaimed, free WinBUGS software. It offers an understanding of statistical models as abstract representations of the various processes that give rise to a data set. Such an understanding is basic to the development of inference models tailored to specific sampling and ecological scenarios. The book begins by presenting the advantages of a Bayesian approach to statistics and introducing the WinBUGS software. It reviews the four most common statistical distributions: the normal, the uniform, the binomial, and the Poisson. It describes the two different kinds of analysis of variance (ANOVA): one-way and two- or multiway. It looks at the general linear model, or ANCOVA, in R and WinBUGS. It introduces generalized linear model (GLM), i.e., the extension of the normal linear model to allow error distributions other than the normal. The GLM is then extended contain additional sources of random variation to become a generalized linear mixed model (GLMM) for a Poisson example and for a binomial example. The final two chapters showcase two fairly novel and nonstandard versions of a GLMM. The first is the site-occupancy model for species distributions; the second is the binomial (or N-) mixture model for estimation and modeling of abundance. - Introduction to the essential theories of key models used by ecologists - Complete juxtaposition of classical analyses in R and Bayesian analysis of the same models in WinBUGS - Provides every detail of R and WinBUGS code required to conduct all analyses - Companion Web Appendix that contains all code contained in the book and additional material (including more code and solutions to exercises)
A Survey Of Methane Emissions From The California Natural Gas System
DOWNLOAD
Author : Marc L. Fischer
language : en
Publisher:
Release Date : 2017
A Survey Of Methane Emissions From The California Natural Gas System written by Marc L. Fischer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Greenhouse gas mitigation categories.
Atmospheric Measurement And Inverse Modeling To Improve Greenhouse Gas Emission Estimates 2015
DOWNLOAD
Author : Marc L. Fischer
language : en
Publisher:
Release Date : 2016
Atmospheric Measurement And Inverse Modeling To Improve Greenhouse Gas Emission Estimates 2015 written by Marc L. Fischer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Atmosphere categories.
Statistical Rethinking
DOWNLOAD
Author : Richard McElreath
language : en
Publisher: CRC Press
Release Date : 2018-01-03
Statistical Rethinking written by Richard McElreath and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-03 with Mathematics categories.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Bayesian Models
DOWNLOAD
Author : N. Thompson Hobbs
language : en
Publisher: Princeton University Press
Release Date : 2015-08-04
Bayesian Models written by N. Thompson Hobbs and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-04 with Science categories.
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals. This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management. Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more Deemphasizes computer coding in favor of basic principles Explains how to write out properly factored statistical expressions representing Bayesian models
Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01
Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Doing Bayesian Data Analysis
DOWNLOAD
Author : John Kruschke
language : en
Publisher: Academic Press
Release Date : 2014-11-11
Doing Bayesian Data Analysis written by John Kruschke and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-11 with Mathematics categories.
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and JAGS software - Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) - Coverage of experiment planning - R and JAGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment - Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs