Bayesian Models

DOWNLOAD
Download Bayesian Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Hierarchical Models
DOWNLOAD
Author : Peter D. Congdon
language : en
Publisher: CRC Press
Release Date : 2019-09-16
Bayesian Hierarchical Models written by Peter D. Congdon and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-16 with Mathematics categories.
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Bayesian Models Of Perception And Action
DOWNLOAD
Author : Wei Ji Ma
language : en
Publisher: MIT Press
Release Date : 2023-08-08
Bayesian Models Of Perception And Action written by Wei Ji Ma and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-08-08 with Science categories.
An accessible introduction to constructing and interpreting Bayesian models of perceptual decision-making and action. Many forms of perception and action can be mathematically modeled as probabilistic—or Bayesian—inference, a method used to draw conclusions from uncertain evidence. According to these models, the human mind behaves like a capable data scientist or crime scene investigator when dealing with noisy and ambiguous data. This textbook provides an approachable introduction to constructing and reasoning with probabilistic models of perceptual decision-making and action. Featuring extensive examples and illustrations, Bayesian Models of Perception and Action is the first textbook to teach this widely used computational framework to beginners. Introduces Bayesian models of perception and action, which are central to cognitive science and neuroscience Beginner-friendly pedagogy includes intuitive examples, daily life illustrations, and gradual progression of complex concepts Broad appeal for students across psychology, neuroscience, cognitive science, linguistics, and mathematics Written by leaders in the field of computational approaches to mind and brain
Bayesian Models Of Cognition
DOWNLOAD
Author : Thomas L. Griffiths
language : en
Publisher: MIT Press
Release Date : 2024-11-12
Bayesian Models Of Cognition written by Thomas L. Griffiths and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-12 with Science categories.
The definitive introduction to Bayesian cognitive science, written by pioneers of the field. How does human intelligence work, in engineering terms? How do our minds get so much from so little? Bayesian models of cognition provide a powerful framework for answering these questions by reverse-engineering the mind. This textbook offers an authoritative introduction to Bayesian cognitive science and a unifying theoretical perspective on how the mind works. Part I provides an introduction to the key mathematical ideas and illustrations with examples from the psychological literature, including detailed derivations of specific models and references that can be used to learn more about the underlying principles. Part II details more advanced topics and their applications before engaging with critiques of the reverse-engineering approach. Written by experts at the forefront of new research, this comprehensive text brings the fields of cognitive science and artificial intelligence back together and establishes a firmly grounded mathematical and computational foundation for the understanding of human intelligence. The only textbook comprehensively introducing the Bayesian approach to cognition Written by pioneers in the field Offers cutting-edge coverage of Bayesian cognitive science's research frontiers Suitable for advanced undergraduate and graduate students and researchers across the sciences with an interest in the mind, brain, and intelligence Features short tutorials and case studies of specific Bayesian models
Bayesian Statistical Modelling
DOWNLOAD
Author : Peter Congdon
language : en
Publisher: John Wiley & Sons
Release Date : 2007-04-04
Bayesian Statistical Modelling written by Peter Congdon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-04 with Mathematics categories.
Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology
Bayesian Models For Astrophysical Data
DOWNLOAD
Author : Joseph M. Hilbe
language : en
Publisher: Cambridge University Press
Release Date : 2017-04-27
Bayesian Models For Astrophysical Data written by Joseph M. Hilbe and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-27 with Mathematics categories.
A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types.
Learning Bayesian Models With R
DOWNLOAD
Author : Dr. Hari M. Koduvely
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-10-28
Learning Bayesian Models With R written by Dr. Hari M. Koduvely and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Computers categories.
Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.
Bringing Bayesian Models To Life
DOWNLOAD
Author : Mevin B. Hooten
language : en
Publisher: CRC Press
Release Date : 2019-05-15
Bringing Bayesian Models To Life written by Mevin B. Hooten and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-15 with Mathematics categories.
Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models. Features: R code implementing algorithms to fit Bayesian models using real and simulated data examples. A comprehensive review of statistical models commonly used in ecological and environmental science. Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC. Derivations of the necessary components to construct statistical algorithms from scratch. Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.
Bayesian Models For Categorical Data
DOWNLOAD
Author : Peter Congdon
language : en
Publisher: John Wiley & Sons
Release Date : 2005-12-13
Bayesian Models For Categorical Data written by Peter Congdon and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-13 with Mathematics categories.
The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.
Bayesian Modeling In Bioinformatics
DOWNLOAD
Author : Dipak K. Dey
language : en
Publisher: CRC Press
Release Date : 2010-09-03
Bayesian Modeling In Bioinformatics written by Dipak K. Dey and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-03 with Mathematics categories.
Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and c
Bayesian Modeling Using Winbugs
DOWNLOAD
Author : Ioannis Ntzoufras
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20
Bayesian Modeling Using Winbugs written by Ioannis Ntzoufras and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Mathematics categories.
A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.