Bayesian Programming

DOWNLOAD
Download Bayesian Programming PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Programming book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Methods For Hackers
DOWNLOAD
Author : Cameron Davidson-Pilon
language : en
Publisher: Addison-Wesley Professional
Release Date : 2015-09-30
Bayesian Methods For Hackers written by Cameron Davidson-Pilon and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-30 with Computers categories.
Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.
Bayesian Programming
DOWNLOAD
Author : Pierre Bessiere
language : en
Publisher: CRC Press
Release Date : 2013-12-20
Bayesian Programming written by Pierre Bessiere and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-20 with Business & Economics categories.
Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in natur
Bayesian Modeling And Computation In Python
DOWNLOAD
Author : Osvaldo A. Martin
language : en
Publisher: CRC Press
Release Date : 2021-12-28
Bayesian Modeling And Computation In Python written by Osvaldo A. Martin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-28 with Computers categories.
Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.
Bayesian Analysis With Python
DOWNLOAD
Author : Osvaldo Martin
language : en
Publisher:
Release Date : 2016-11-25
Bayesian Analysis With Python written by Osvaldo Martin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Bayesian statistical decision theory categories.
Unleash the power and flexibility of the Bayesian frameworkAbout This Book- Simplify the Bayes process for solving complex statistical problems using Python; - Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; - Learn how and when to use Bayesian analysis in your applications with this guide.Who This Book Is ForStudents, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.What You Will Learn- Understand the essentials Bayesian concepts from a practical point of view- Learn how to build probabilistic models using the Python library PyMC3- Acquire the skills to sanity-check your models and modify them if necessary- Add structure to your models and get the advantages of hierarchical models- Find out how different models can be used to answer different data analysis questions - When in doubt, learn to choose between alternative models.- Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.- Learn how to think probabilistically and unleash the power and flexibility of the Bayesian frameworkIn DetailThe purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.Style and approachBayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.
An Inductive Logic Programming Approach To Statistical Relational Learning
DOWNLOAD
Author : Kristian Kersting
language : en
Publisher: IOS Press
Release Date : 2006
An Inductive Logic Programming Approach To Statistical Relational Learning written by Kristian Kersting and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Computers categories.
Talks about Logic Programming, Uncertainty Reasoning and Machine Learning. This book includes definitions that circumscribe the area formed by extending Inductive Logic Programming to cases annotated with probability values. It investigates the approach of Learning from proofs and the issue of upgrading Fisher Kernels to Relational Fisher Kernels.
Probabilistic Inductive Logic Programming
DOWNLOAD
Author : Luc De Raedt
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-03-14
Probabilistic Inductive Logic Programming written by Luc De Raedt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-14 with Computers categories.
The question, how to combine probability and logic with learning, is getting an increased attention in several disciplines such as knowledge representation, reasoning about uncertainty, data mining, and machine learning simulateously. This results in the newly emerging subfield known under the names of statistical relational learning and probabilistic inductive logic programming. This book provides an introduction to the field with an emphasis on the methods based on logic programming principles. It is concerned with formalisms and systems, implementations and applications, as well as with the theory of probabilistic inductive logic programming. The 13 chapters of this state-of-the-art survey start with an introduction to probabilistic inductive logic programming; moreover the book presents a detailed overview of the most important probabilistic logic learning formalisms and systems such as relational sequence learning techniques, using kernels with logical representations, Markov logic, the PRISM system, CLP(BN), Bayesian logic programs, and the independent choice logic. The third part provides a detailed account of some show-case applications of probabilistic inductive logic programming. The final part touches upon some theoretical investigations and includes chapters on behavioural comparison of probabilistic logic programming representations and a model-theoretic expressivity analysis.
Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01
Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Inductive Logic Programming
DOWNLOAD
Author : Filip Železný
language : en
Publisher: Springer
Release Date : 2008-08-29
Inductive Logic Programming written by Filip Železný and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-29 with Computers categories.
The 18th International Conference on Inductive Logic Programming was held in Prague, September 10–12, 2008. ILP returned to Prague after 11 years, and it is tempting to look at how the topics of interest have evolved during that time. The ILP community clearly continues to cherish its beloved ?rst-order logic representation framework. This is legitimate, as the work presented at ILP 2008 demonstrated that there is still room for both extending established ILP approaches (such as inverse entailment) and exploring novel logic induction frameworks (such as brave induction). Besides the topics lending ILP research its unique focus, we were glad to see in this year’s proceedings a good n- ber of papers contributing to areas such as statistical relational learning, graph mining, or the semantic web. To help open ILP to more mainstream research areas, the conference featured three excellent invited talks from the domains of the semantic web (Frank van Harmelen), bioinformatics (Mark Craven) and cognitive sciences (Josh Tenenbaum). We deliberately looked for speakers who are not directly involved in ILP research. We further invited a tutorial on stat- tical relational learning (Kristian Kersting) to meet the strong demand to have the topic presented from the ILP perspective. Lastly, Stefano Bertolo from the European Commission was invited to give a talk on the ideal niches for ILP in the current EU-supported research on intelligent content and semantics.
Inductive Logic Programming
DOWNLOAD
Author : Celine Rouveirol
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-08-29
Inductive Logic Programming written by Celine Rouveirol and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-29 with Computers categories.
This book constitutes the refereed proceedings of the 11th International Conference on Inductive Logic Programming, ILP 2001, held in Strasbourg, France in September 2001. The 21 revised full papers presented were carefully reviewed and selected from 37 submissions. Among the topics addressed are data mining issues for multi-relational databases, supervised learning, inductive inference, Bayesian reasoning, learning refinement operators, neural network learning, constraint satisfaction, genetic algorithms, statistical machine learning, transductive inference, etc.
DOWNLOAD
Author :
language : en
Publisher: IOS Press
Release Date :
written by and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.