Bayesian Statistics

DOWNLOAD
Download Bayesian Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Introduction To Bayesian Statistics
DOWNLOAD
Author : William M. Bolstad
language : en
Publisher: John Wiley & Sons
Release Date : 2016-09-02
Introduction To Bayesian Statistics written by William M. Bolstad and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-02 with Mathematics categories.
"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Bayesian Statistics For Beginners
DOWNLOAD
Author : Therese M. Donovan
language : en
Publisher: Oxford University Press
Release Date : 2019-05-23
Bayesian Statistics For Beginners written by Therese M. Donovan and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-23 with Mathematics categories.
Bayesian statistics is currently undergoing something of a renaissance. At its heart is a method of statistical inference in which Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. It is an approach that is ideally suited to making initial assessments based on incomplete or imperfect information; as that information is gathered and disseminated, the Bayesian approach corrects or replaces the assumptions and alters its decision-making accordingly to generate a new set of probabilities. As new data/evidence becomes available the probability for a particular hypothesis can therefore be steadily refined and revised. It is very well-suited to the scientific method in general and is widely used across the social, biological, medical, and physical sciences. Key to this book's novel and informal perspective is its unique pedagogy, a question and answer approach that utilizes accessible language, humor, plentiful illustrations, and frequent reference to on-line resources. Bayesian Statistics for Beginners is an introductory textbook suitable for senior undergraduate and graduate students, professional researchers, and practitioners seeking to improve their understanding of the Bayesian statistical techniques they routinely use for data analysis in the life and medical sciences, psychology, public health, business, and other fields.
Bayesian Statistics
DOWNLOAD
Author : Thomas J. Faulkenberry
language : en
Publisher: Taylor & Francis
Release Date : 2025-04-30
Bayesian Statistics written by Thomas J. Faulkenberry and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-04-30 with Mathematics categories.
Bayesian Statistics: The Basics provides a comprehensive yet accessible introduction to Bayesian statistics, specifically tailored for any researcher with an interest in statistical methods. It covers the theoretical foundations of Bayesian inference, contrasting it with classical statistical methods like null hypothesis significance testing. The book emphasizes key concepts such as prior and posterior distributions, Bayes’ theorem, and the Bayes factor, making them understandable even for readers with minimal mathematical backgrounds. Methodologically, the book offers practical, step-by-step guides on how to conduct Bayesian analyses using the free software package JASP. Each chapter focuses on applying Bayesian methods to common research designs with real-world data. Readers will benefit from the clear examples, visualizations, and JASP screenshots that ensure the learning experience is interactive and easy to follow. Full of practical content, the book emphasizes the advantages of Bayesian model comparison over traditional approaches, especially in quantifying evidence for competing hypotheses. Readers will also learn how to perform sensitivity analyses to assess the impact of different prior assumptions on their results. By the end of the book, readers will get both the theoretical understanding and practical skills to implement Bayesian methods in their own research, making it an invaluable resource for both novice and experienced researchers studying Bayesian statistics.
Understanding Computational Bayesian Statistics
DOWNLOAD
Author : William M. Bolstad
language : en
Publisher: John Wiley & Sons
Release Date : 2011-09-20
Understanding Computational Bayesian Statistics written by William M. Bolstad and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-20 with Mathematics categories.
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model. The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include: Direct ways to draw a random sample from the posterior by reshaping a random sample drawn from an easily sampled starting distribution The distributions from the one-dimensional exponential family Markov chains and their long-run behavior The Metropolis-Hastings algorithm Gibbs sampling algorithm and methods for speeding up convergence Markov chain Monte Carlo sampling Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages. Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.
Bayesian Statistics 6
DOWNLOAD
Author : J. M. Bernardo
language : en
Publisher: Oxford University Press
Release Date : 1999-08-12
Bayesian Statistics 6 written by J. M. Bernardo and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-08-12 with Business & Economics categories.
Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.
Subjective And Objective Bayesian Statistics
DOWNLOAD
Author : S. James Press
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25
Subjective And Objective Bayesian Statistics written by S. James Press and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.
Ein Wiley-Klassiker über Bayes-Statistik, jetzt in durchgesehener und erweiterter Neuauflage! - Werk spiegelt die stürmische Entwicklung dieses Gebietes innerhalb der letzten Jahre wider - vollständige Darstellung der theoretischen Grundlagen - jetzt ergänzt durch unzählige Anwendungsbeispiele - die wichtigsten modernen Methoden (u. a. hierarchische Modellierung, linear-dynamische Modellierung, Metaanalyse, MCMC-Simulationen) - einzigartige Diskussion der Finetti-Transformierten und anderer Themen, über die man ansonsten nur spärliche Informationen findet - Lösungen zu den Übungsaufgaben sind enthalten
Bayesian Statistics For The Social Sciences
DOWNLOAD
Author : David Kaplan
language : en
Publisher: Guilford Publications
Release Date : 2023-11-10
Bayesian Statistics For The Social Sciences written by David Kaplan and has been published by Guilford Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-10 with Business & Economics categories.
"Since the publication of the first edition, Bayesian statistics is, arguably, still not the norm in the formal quantitative methods training of social scientists. Typically, the only introduction that a student might have to Bayesian ideas is a brief overview of Bayes' theorem while studying probability in an introductory statistics class. This is not surprising. First, until relatively recently, it was not feasible to conduct statistical modeling from a Bayesian perspective owing to its complexity and lack of available software. Second, Bayesian statistics represents a powerful alternative to frequentist (conventional) statistics and, therefore, can be controversial, especially in the context of null hypothesis significance testing. However, over the last 20 years, or so, considerably progress has been made in the development and application of complex Bayesian statistical methods, due mostly to developments and availability of proprietary and open-source statistical software tools. And, although Bayesian statistics is not quite yet an integral part of the quantitative training of social scientists, there has been increasing interest in the application of Bayesian methods, and it is not unreasonable to say that in terms of theoretical developments and substantive applications, Bayesian statistics has arrived. Because of extensive developments in Bayesian theory and computation since the publication of the first edition of this book, there was a pressing need for a thorough update of the material to reflect new developments in Bayesian methodology and software. The basic foundations of Bayesian statistics remain more or less the same, but this second edition encompasses many new extensions"--
A Student S Guide To Bayesian Statistics
DOWNLOAD
Author : Ben Lambert
language : en
Publisher: SAGE
Release Date : 2018-04-20
A Student S Guide To Bayesian Statistics written by Ben Lambert and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-20 with Mathematics categories.
Without sacrificing technical integrity for the sake of simplicity, the author draws upon accessible, student-friendly language to provide approachable instruction perfectly aimed at statistics and Bayesian newcomers.
Case Studies In Bayesian Statistics
DOWNLOAD
Author : Constantine Gatsonis
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Case Studies In Bayesian Statistics written by Constantine Gatsonis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The past few years have witnessed dramatic advances in computational methods for Bayesian inference. As a result, Bayesian approaches to solving a wide variety of problems in data analysis and decision-making have become feasible, and there is currently a growth spurt in the application of Bayesian methods. The purpose of this volume is to present several detailed examples of applications of Bayesian thinking, with an emphasis on the scientific or technological context of the problem being solved. The papers collected here were presented and discussed at a Workshop held at Carnegie-Mellon University, September 29 through October 1, 1991. There are five ma jor articles, each with two discussion pieces and a reply. These articles were invited by us following a public solicitation of abstracts. The problems they address are diverse, but all bear on policy decision-making. Though not part of our original design for the Workshop, that commonality of theme does emphasize the usefulness of Bayesian meth ods in this arena. Along with the invited papers were several additional commentaries of a general nature; the first comment was invited and the remainder grew out of the discussion at the Workshop. In addition there are nine contributed papers, selected from the thirty-four presented at the Workshop, on a variety of applications. This collection of case studies illustrates the ways in which Bayesian methods are being incorporated into statistical practice. The strengths (and limitations) of the approach become apparent through the examples.
Modern Bayesian Statistics In Clinical Research
DOWNLOAD
Author : Ton J. Cleophas
language : en
Publisher: Springer
Release Date : 2018-07-31
Modern Bayesian Statistics In Clinical Research written by Ton J. Cleophas and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-31 with Medical categories.
The current textbook has been written as a help to medical / health professionals and students for the study of modern Bayesian statistics, where posterior and prior odds have been replaced with posterior and prior likelihood distributions. Why may likelihood distributions better than normal distributions estimate uncertainties of statistical test results? Nobody knows for sure, and the use of likelihood distributions instead of normal distributions for the purpose has only just begun, but already everybody is trying and using them. SPSS statistical software version 25 (2017) has started to provide a combined module entitled Bayesian Statistics including almost all of the modern Bayesian tests (Bayesian t-tests, analysis of variance (anova), linear regression, crosstabs etc.). Modern Bayesian statistics is based on biological likelihoods, and may better fit clinical data than traditional tests based normal distributions do. This is the first edition to systematically imply modern Bayesian statistics in traditional clinical data analysis. This edition also demonstrates that Markov Chain Monte Carlo procedures laid out as Bayesian tests provide more robust correlation coefficients than traditional tests do. It also shows that traditional path statistics are both textually and conceptionally like Bayes theorems, and that structural equations models computed from them are the basis of multistep regressions, as used with causal Bayesian networks.