Subjective And Objective Bayesian Statistics

DOWNLOAD
Download Subjective And Objective Bayesian Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Subjective And Objective Bayesian Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Subjective And Objective Bayesian Statistics
DOWNLOAD
Author : S. James Press
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25
Subjective And Objective Bayesian Statistics written by S. James Press and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.
Ein Wiley-Klassiker über Bayes-Statistik, jetzt in durchgesehener und erweiterter Neuauflage! - Werk spiegelt die stürmische Entwicklung dieses Gebietes innerhalb der letzten Jahre wider - vollständige Darstellung der theoretischen Grundlagen - jetzt ergänzt durch unzählige Anwendungsbeispiele - die wichtigsten modernen Methoden (u. a. hierarchische Modellierung, linear-dynamische Modellierung, Metaanalyse, MCMC-Simulationen) - einzigartige Diskussion der Finetti-Transformierten und anderer Themen, über die man ansonsten nur spärliche Informationen findet - Lösungen zu den Übungsaufgaben sind enthalten
The Subjectivity Of Scientists And The Bayesian Approach
DOWNLOAD
Author : S. James Press
language : en
Publisher: Courier Dover Publications
Release Date : 2016-02-17
The Subjectivity Of Scientists And The Bayesian Approach written by S. James Press and has been published by Courier Dover Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-17 with Mathematics categories.
Intriguing examination of works by Aristotle, Galileo, Newton, Pasteur, Einstein, Margaret Mead, and other scientists in terms of subjectivity and the Bayesian approach to statistical analysis. "An insightful work." — Choice. 2001 edition.
Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01
Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Objective Bayesian Inference
DOWNLOAD
Author : James O Berger
language : en
Publisher: World Scientific
Release Date : 2024-03-06
Objective Bayesian Inference written by James O Berger and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-06 with Mathematics categories.
Bayesian analysis is today understood to be an extremely powerful method of statistical analysis, as well an approach to statistics that is particularly transparent and intuitive. It is thus being extensively and increasingly utilized in virtually every area of science and society that involves analysis of data.A widespread misconception is that Bayesian analysis is a more subjective theory of statistical inference than what is now called classical statistics. This is true neither historically nor in practice. Indeed, objective Bayesian analysis dominated the statistical landscape from roughly 1780 to 1930, long before 'classical' statistics or subjective Bayesian analysis were developed. It has been a subject of intense interest to a multitude of statisticians, mathematicians, philosophers, and scientists. The book, while primarily focusing on the latest and most prominent objective Bayesian methodology, does present much of this fascinating history.The book is written for four different audiences. First, it provides an introduction to objective Bayesian inference for non-statisticians; no previous exposure to Bayesian analysis is needed. Second, the book provides an overview of the development and current state of objective Bayesian analysis and its relationship to other statistical approaches, for those with interest in the philosophy of learning from data. Third, the book presents a careful development of the particular objective Bayesian approach that we recommend, the reference prior approach. Finally, the book presents as much practical objective Bayesian methodology as possible for statisticians and scientists primarily interested in practical applications.
Large Scale Inverse Problems And Quantification Of Uncertainty
DOWNLOAD
Author : Lorenz Biegler
language : en
Publisher: John Wiley & Sons
Release Date : 2011-06-24
Large Scale Inverse Problems And Quantification Of Uncertainty written by Lorenz Biegler and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-24 with Mathematics categories.
This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.
In Defence Of Objective Bayesianism
DOWNLOAD
Author : Jon Williamson
language : en
Publisher: Oxford University Press
Release Date : 2010-05-13
In Defence Of Objective Bayesianism written by Jon Williamson and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-13 with Computers categories.
Objective Bayesianism is a methodological theory that is currently applied in statistics, philosophy, artificial intelligence, physics and other sciences. This book develops the formal and philosophical foundations of the theory, at a level accessible to a graduate student with some familiarity with mathematical notation.
An Introduction To Bayesian Analysis
DOWNLOAD
Author : Jayanta K. Ghosh
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-03
An Introduction To Bayesian Analysis written by Jayanta K. Ghosh and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-03 with Mathematics categories.
Though there are many recent additions to graduate-level introductory books on Bayesian analysis, none has quite our blend of theory, methods, and ap plications. We believe a beginning graduate student taking a Bayesian course or just trying to find out what it means to be a Bayesian ought to have some familiarity with all three aspects. More specialization can come later. Each of us has taught a course like this at Indian Statistical Institute or Purdue. In fact, at least partly, the book grew out of those courses. We would also like to refer to the review (Ghosh and Samanta (2002b)) that first made us think of writing a book. The book contains somewhat more material than can be covered in a single semester. We have done this intentionally, so that an instructor has some choice as to what to cover as well as which of the three aspects to emphasize. Such a choice is essential for the instructor. The topics include several results or methods that have not appeared in a graduate text before. In fact, the book can be used also as a second course in Bayesian analysis if the instructor supplies more details. Chapter 1 provides a quick review of classical statistical inference. Some knowledge of this is assumed when we compare different paradigms. Following this, an introduction to Bayesian inference is given in Chapter 2 emphasizing the need for the Bayesian approach to statistics.
Bayesian Reasoning In Data Analysis A Critical Introduction
DOWNLOAD
Author : Giulio D'agostini
language : en
Publisher: World Scientific
Release Date : 2003-06-13
Bayesian Reasoning In Data Analysis A Critical Introduction written by Giulio D'agostini and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-06-13 with Mathematics categories.
This book provides a multi-level introduction to Bayesian reasoning (as opposed to “conventional statistics”) and its applications to data analysis. The basic ideas of this “new” approach to the quantification of uncertainty are presented using examples from research and everyday life. Applications covered include: parametric inference; combination of results; treatment of uncertainty due to systematic errors and background; comparison of hypotheses; unfolding of experimental distributions; upper/lower bounds in frontier-type measurements. Approximate methods for routine use are derived and are shown often to coincide — under well-defined assumptions! — with “standard” methods, which can therefore be seen as special cases of the more general Bayesian methods. In dealing with uncertainty in measurements, modern metrological ideas are utilized, including the ISO classification of uncertainty into type A and type B. These are shown to fit well into the Bayesian framework.
Case Studies In Bayesian Statistical Modelling And Analysis
DOWNLOAD
Author : Clair L. Alston
language : en
Publisher: John Wiley & Sons
Release Date : 2012-10-10
Case Studies In Bayesian Statistical Modelling And Analysis written by Clair L. Alston and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-10 with Mathematics categories.
Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.
Bayesian Inference In Statistical Analysis
DOWNLOAD
Author : George E. P. Box
language : en
Publisher: John Wiley & Sons
Release Date : 2011-01-25
Bayesian Inference In Statistical Analysis written by George E. P. Box and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-25 with Mathematics categories.
Its main objective is to examine the application and relevance of Bayes' theorem to problems that arise in scientific investigation in which inferences must be made regarding parameter values about which little is known a priori. Begins with a discussion of some important general aspects of the Bayesian approach such as the choice of prior distribution, particularly noninformative prior distribution, the problem of nuisance parameters and the role of sufficient statistics, followed by many standard problems concerned with the comparison of location and scale parameters. The main thrust is an investigation of questions with appropriate analysis of mathematical results which are illustrated with numerical examples, providing evidence of the value of the Bayesian approach.