Before Machine Learning Volume 1 Linear Algebra For A I

DOWNLOAD
Download Before Machine Learning Volume 1 Linear Algebra For A I PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Before Machine Learning Volume 1 Linear Algebra For A I book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Before Machine Learning Volume 1 Linear Algebra For A I
DOWNLOAD
Author : Jorge Brasil
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-05-24
Before Machine Learning Volume 1 Linear Algebra For A I written by Jorge Brasil and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-24 with Computers categories.
Unlock the essentials of linear algebra to build a strong foundation for machine learning. Dive into vectors, matrices, and principal component analysis with expert guidance in "Before Machine Learning Volume 1 - Linear Algebra." Key Features Comprehensive introduction to linear algebra for machine learning Detailed exploration of vectors and matrices In-depth study of principal component analysis (PCA) Book DescriptionIn this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field. As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance. This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios.What you will learn Understand the fundamental concepts of vectors and matrices Implement principal component analysis in data reduction Analyze the role of linear algebra in machine learning Enhance problem-solving skills through practical applications Gain the ability to interpret and manipulate high-dimensional data Build confidence in using linear algebra for data science projects Who this book is for This course is ideal for technical professionals, data scientists, aspiring machine learning engineers, and students of computer science or related fields. Additionally, it is beneficial for software developers, engineers, and IT professionals seeking to transition into data science or machine learning roles. A basic understanding of high school-level mathematics is recommended but not required, making it accessible for those looking to build a foundational understanding before diving into more advanced topics.
Mathematics For Machine Learning
DOWNLOAD
Author : Marc Peter Deisenroth
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-23
Mathematics For Machine Learning written by Marc Peter Deisenroth and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-23 with Computers categories.
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Linear Algebra And Optimization For Machine Learning
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Nature
Release Date : 2020-05-13
Linear Algebra And Optimization For Machine Learning written by Charu C. Aggarwal and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-13 with Computers categories.
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Before Machine Learning
DOWNLOAD
Author : Jorge Brasil
language : en
Publisher:
Release Date : 2023
Before Machine Learning written by Jorge Brasil and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with Algebras, Linear categories.
Before Machine Learning Volume 2 Calculus For A I
DOWNLOAD
Author : Jorge Brasil
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-11-22
Before Machine Learning Volume 2 Calculus For A I written by Jorge Brasil and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-11-22 with Mathematics categories.
Deepen your calculus foundation for AI and machine learning with essential concepts like derivatives, integrals, and multivariable calculus, all applied directly to neural networks and optimization. Key Features A step-by-step guide to calculus concepts tailored for AI and machine learning applications Clear explanations of advanced topics like Taylor Series, gradient descent, and backpropagation Practical insights connecting calculus principles directly to neural networks and data science Book DescriptionThis book takes readers on a structured journey through calculus fundamentals essential for AI. Starting with “Why Calculus?” it introduces key concepts like functions, limits, and derivatives, providing a solid foundation for understanding machine learning. As readers progress, they will encounter practical applications such as Taylor Series for curve fitting, gradient descent for optimization, and L'Hôpital’s Rule for managing undefined expressions. Each chapter builds up from core calculus to multidimensional topics, making complex ideas accessible and applicable to AI. The final chapters guide readers through multivariable calculus, including advanced concepts like the gradient, Hessian, and backpropagation, crucial for neural networks. From optimizing models to understanding cost functions, this book equips readers with the calculus skills needed to confidently tackle AI challenges, offering insights that make complex calculus both manageable and deeply relevant to machine learning.What you will learn Explore the essentials of calculus for machine learning Calculate derivatives and apply them in optimization tasks Analyze functions, limits, and continuity in data science Apply Taylor Series for predictive curve modeling Use gradient descent for effective cost-minimization Implement multivariable calculus in neural networks Who this book is for Aspiring AI engineers, machine learning students, and data scientists will find this book valuable for building a strong calculus foundation. A basic understanding of calculus is beneficial, but the book introduces essential concepts gradually for all levels.
A Matrix Algebra Approach To Artificial Intelligence
DOWNLOAD
Author : Xian-Da Zhang
language : en
Publisher: Springer Nature
Release Date : 2020-05-23
A Matrix Algebra Approach To Artificial Intelligence written by Xian-Da Zhang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-23 with Computers categories.
Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective. The book consists of two parts: the first discusses the fundamentals of matrix algebra in detail, while the second focuses on the applications of matrix algebra approaches in AI. Highlighting matrix algebra in graph-based learning and embedding, network embedding, convolutional neural networks and Pareto optimization theory, and discussing recent topics and advances, the book offers a valuable resource for scientists, engineers, and graduate students in various disciplines, including, but not limited to, computer science, mathematics and engineering.
Basics Of Linear Algebra For Machine Learning
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2018-01-24
Basics Of Linear Algebra For Machine Learning written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-24 with Computers categories.
Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.
The Art Of Problem Solving Volume 1
DOWNLOAD
Author : Sandor Lehoczky
language : en
Publisher: Mitchell Beazley
Release Date : 2006
The Art Of Problem Solving Volume 1 written by Sandor Lehoczky and has been published by Mitchell Beazley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006 with Mathematics categories.
" ... offer[s] a challenging exploration of problem solving mathematics and preparation for programs such as MATHCOUNTS and the American Mathematics Competition."--Back cover
Before Machine Learning Volume 3 Probability And Statistics For A I
DOWNLOAD
Author : Jorge Brasil
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-01-21
Before Machine Learning Volume 3 Probability And Statistics For A I written by Jorge Brasil and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-21 with Mathematics categories.
Explore the critical role of probability and statistics in building AI systems. A detailed resource for machine learning enthusiasts to solidify their understanding of the mathematical and statistical underpinnings of AI. Key Features Detailed exploration of probability and statistics in AI development Step-by-step explanation of key statistical concepts with practical applications A comprehensive coverage of models, Markov processes, and hierarchical techniques Book DescriptionDelve into the importance of probability and statistics in AI, beginning with fundamental measures like mean, median, and variance. This book takes you on a journey through the basics of probability theory, introducing key concepts such as central tendency, variance, and probability distributions. It emphasizes the role of statistical measures in understanding and analyzing data. Building on these foundations, the book explores hypothesis testing, Bayesian inference, and statistical distributions in-depth. Readers will gain practical insights into essential techniques for model evaluation, maximum likelihood estimation, and the interpretation of data in the context of AI applications. Each concept is illustrated with practical examples and case studies to ensure clarity and application. Finally, advanced topics like Markov processes, hierarchical Bayesian models, and multivariate distributions are introduced. The book addresses critical areas like variance, correlation, and hypothesis testing, equipping readers with the skills to tackle real-world challenges in AI and machine learning. Whether you're a student, professional, or AI enthusiast, this book offers the essential statistical tools and knowledge to excel in the field.What you will learn Understand probability theory and its foundational role in AI Explore statistical measures and distributions for data analysis Apply Bayesian models for decision-making processes Learn hypothesis testing and model evaluation techniques Master Markov models for sequential data analysis Understand hierarchical Bayesian models and their applications Who this book is for Students and professionals in data science, artificial intelligence, and machine learning will find this book invaluable. A solid understanding of high school-level algebra and basic calculus is required. This book is ideal for readers who aim to strengthen their statistical and probabilistic skills for use in artificial intelligence applications. It is also beneficial for academics and researchers who want a comprehensive resource on probability and statistics in machine learning.