Beginning Data Analysis With Python And Jupyter Book

DOWNLOAD
Download Beginning Data Analysis With Python And Jupyter Book PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Beginning Data Analysis With Python And Jupyter Book book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Beginning Data Science With Python And Jupyter
DOWNLOAD
Author : Alex Galea
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-06-05
Beginning Data Science With Python And Jupyter written by Alex Galea and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-05 with Computers categories.
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
Become A Python Data Analyst
DOWNLOAD
Author : Alvaro Fuentes
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31
Become A Python Data Analyst written by Alvaro Fuentes and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.
Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book Description Python is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python’s most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is for Become a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book
Beginning Data Analysis With Python And Jupyter Book
DOWNLOAD
Author : Alex Galea
language : en
Publisher:
Release Date : 2018-05-29
Beginning Data Analysis With Python And Jupyter Book written by Alex Galea and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-29 with Computers categories.
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction. Key Features Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests Discover how you can use web scraping to gather and parse your own bespoke datasets Book Description Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. What you will learn Get up and running with the Jupyter ecosystem and some example datasets Learn about key machine learning concepts like SVM, KNN classifiers, and Random Forests Plan a machine learning classification strategy and train classification, models Use validation curves and dimensionality reduction to tune and enhance your models Discover how you can use web scraping to gather and parse your own bespoke datasets Scrape tabular data from web pages and transform them into Pandas DataFrames Create interactive, web-friendly visualizations to clearly communicate your findings Who this book is for This book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.
Python For Data Analysis
DOWNLOAD
Author : Andrew Park
language : en
Publisher: Andrew Park
Release Date : 2021-04-22
Python For Data Analysis written by Andrew Park and has been published by Andrew Park this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-22 with categories.
★ 55% OFF for Bookstores! NOW at $41,97 instead of $51,97!Do you want to learn more about Data Analysis and how to master it with Python?Your Customers Will Love This Amazing Guide! Everyone talks about data today. You have probably come across the term "data" more times than you can remember in one day. Data as a concept is so wide. One thing that is true about data is that it can be used to tell a story. The story could be anything from explaining an event to predicting the future. Data is the future. Businesses, governments, organizations, criminals-everyone needs data for some reason. Entities are investing in different data approaches to help them understand their current situation, and use it to prepare for the unknown. The world of technology as we know it is evolving towards an open-source platform where people share ideas freely. This is seen as the first step towards the decentralization of ideas and eliminating unnecessary monopolies. Therefore, the data, tools, and techniques used in the analysis are easily available for anyone to interpret data sets and get relevant explanations. With Python for Data Analysis you will learn about the main steps that are needed to correctly implement Data Analysis and the procedures to help you extract the right insights from the right data. Some of the topics that we will discuss inside include: What Data Analysis is all about and why businesses are investing in this sector The 5 steps of a Data Analysis Pandas, Jupyter and PyTorch The 7 Python libraries that make Python one of the best choices for Data Analysis Neural Network How Data Visualization and Matplotlib can help you to understand the data you are working with. Some of the main industries that are using data to improve their business with 14 real-world applications And Much More! While most books focus on how to implement advanced predictive models, this book takes the time to explain the basic concepts and all the necessary steps to correctly implement Data Analysis, including Data Visualization and providing practical examples and simple coding scripts. Don't miss the opportunity to learn more about these topics. Even if you never used Data Analysis, learning it is easier than it looks, you just need the right guidance. This practical guide provides all the knowledge you need in a simple and practical way. Regardless of your previous experience, you will learn the steps of Data Analysis, how to implement them in Python, and the most important real-world applications. Would You Like To Know More? Buy it NOW and Let Your Customers Get Addicted to This Amazing Book!
Starting Data Analytics With Generative Ai And Python
DOWNLOAD
Author : Artur Guja
language : en
Publisher: Simon and Schuster
Release Date : 2024-12-24
Starting Data Analytics With Generative Ai And Python written by Artur Guja and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-24 with Computers categories.
Accelerate your mastery of data analytics with the power of ChatGPT. Whether you’re brand new to data analysis or an experienced pro looking to do more work, faster, Starting Data Analytics with Generative AI and Python is here to help simplify and speed up your data analysis! Written by a pair of world-class data scientists and an experienced risk manager, the book concentrates on the practical analytics tasks you'll do every day. Inside Starting Data Analytics with Generative AI and Python you’ll learn how to: • Write great prompts for ChatGPT • Perform end-to-end descriptive analytics • Set up an AI-friendly data analytics environment • Evaluate the quality of your data • Develop a strategic analysis plan • Generate code to analyze non-text data • Explore text data directly with ChatGPT • Prepare reliable reports In Starting Data Analytics with Generative AI and Python you’ll learn how to improve your coding efficiency, generate new analytical approaches, and fine-tune data pipelines—all assisted by AI tools like ChatGPT. For each step in the data process, you’ll discover how ChatGPT can implement data techniques from simple plain-English prompts. Plus, you’ll develop a vital intuition about the risks and errors that still come with these tools. About the technology If you have basic knowledge of data analysis, this book will show you how to use ChatGPT to accelerate your essential data analytics work. This speed-up can be amazing: the authors report needing one third or even one quarter the time they needed before. About the book You’ll find reliable and practical advice that works on the job. Improve problem exploration, generate new analytical approaches, and fine-tune your data pipelines—all while developing an intuition about the risks and errors that still come with AI tools. In the end, you’ll be able to do significantly more work, do it faster, and get better results, without breaking a sweat. Assuming only that you know the foundations, this friendly book guides you through the entire analysis process—from gathering and preparing raw data, data cleaning, generating code-based solutions, selecting statistical tools, and finally creating effective data presentations. With clearly-explained prompts to extract, interpret, and present data, it will raise your skills to a whole different level. What's inside • Write great prompts for ChatGPT • Perform end-to-end descriptive analytics • Set up an AI-friendly data analytics environment • Evaluate the quality of your data • Develop a strategic analysis plan • Generate code to analyze non-text data • Explore text data directly with ChatGPT • Prepare reliable reports About the author Authors Artur Guja, Dr. Marlena Siwiak, and Dr. Marian Siwiak are experienced data scientists with backgrounds in business, scientific research, and finance. The technical editor on this book was Mike Jensen. Table of Contents 1 Introduction to the use of generative AI in data analytics 2 Using generative AI to ensure sufficient data quality 3 Descriptive analysis and statistical inference supported by generative AI 4 Using generative AI for result interpretations 5 Basic text mining using generative AI 6 Advanced text mining with generative AI 7 Scaling and performance optimization 8 Risk, mitigation, and tradeoffs Appendix A Specifying multiple DataFrames to ChatGPT v4 Appendix B On debugging ChatGPT’s code Appendix C On laziness and human errors
A Beginning To Data Science With Python
DOWNLOAD
Author : Dr. S. Britto Ramesh Kumar
language : en
Publisher: OrangeBooks Publication
Release Date : 2023-02-22
A Beginning To Data Science With Python written by Dr. S. Britto Ramesh Kumar and has been published by OrangeBooks Publication this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-22 with Education categories.
This text is a fundamental reference for Data Science using Python required for Computer Science Professional. Authors cover basic concepts of python and Data Science with a step-by-step, “hands on” pedagogical approach with suitable examples together with Python’s clear and simple syntax, which help the reader to teach and learn from. By the time the user completes the book, they will able to do simple data analysis.
An Introduction To Statistics With Python
DOWNLOAD
Author : Thomas Haslwanter
language : en
Publisher: Springer Nature
Release Date : 2022-11-15
An Introduction To Statistics With Python written by Thomas Haslwanter and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-15 with Computers categories.
Now in its second edition, this textbook provides an introduction to Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. For this new edition, the introductory chapters on Python, data input and visualization have been reworked and updated. The chapter on experimental design has been expanded, and programs for the determination of confidence intervals commonly used in quality control have been introduced. The book also features a new chapter on finding patterns in data, including time series. A new appendix describes useful programming tools, such as testing tools, code repositories, and GUIs. The provided working code for Python solutions, together with easy-to-follow examples, will reinforce the reader’s immediate understanding of the topic. Accompanying data sets and Python programs are also available online. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis. With examples drawn mainly from the life and medical sciences, this book is intended primarily for masters and PhD students. As it provides the required statistics background, the book can also be used by anyone who wants to perform a statistical data analysis.
Python For Data Analysis
DOWNLOAD
Author : Wes McKinney
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-09-25
Python For Data Analysis written by Wes McKinney and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-25 with Computers categories.
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Data Analysis With Python
DOWNLOAD
Author : David Taieb
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-31
Data Analysis With Python written by David Taieb and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-31 with Computers categories.
Learn a modern approach to data analysis using Python to harness the power of programming and AI across your data. Detailed case studies bring this modern approach to life across visual data, social media, graph algorithms, and time series analysis. Key FeaturesBridge your data analysis with the power of programming, complex algorithms, and AIUse Python and its extensive libraries to power your way to new levels of data insightWork with AI algorithms, TensorFlow, graph algorithms, NLP, and financial time seriesExplore this modern approach across with key industry case studies and hands-on projectsBook Description Data Analysis with Python offers a modern approach to data analysis so that you can work with the latest and most powerful Python tools, AI techniques, and open source libraries. Industry expert David Taieb shows you how to bridge data science with the power of programming and algorithms in Python. You'll be working with complex algorithms, and cutting-edge AI in your data analysis. Learn how to analyze data with hands-on examples using Python-based tools and Jupyter Notebook. You'll find the right balance of theory and practice, with extensive code files that you can integrate right into your own data projects. Explore the power of this approach to data analysis by then working with it across key industry case studies. Four fascinating and full projects connect you to the most critical data analysis challenges you’re likely to meet in today. The first of these is an image recognition application with TensorFlow – embracing the importance today of AI in your data analysis. The second industry project analyses social media trends, exploring big data issues and AI approaches to natural language processing. The third case study is a financial portfolio analysis application that engages you with time series analysis - pivotal to many data science applications today. The fourth industry use case dives you into graph algorithms and the power of programming in modern data science. You'll wrap up with a thoughtful look at the future of data science and how it will harness the power of algorithms and artificial intelligence. What you will learnA new toolset that has been carefully crafted to meet for your data analysis challengesFull and detailed case studies of the toolset across several of today’s key industry contextsBecome super productive with a new toolset across Python and Jupyter NotebookLook into the future of data science and which directions to develop your skills nextWho this book is for This book is for developers wanting to bridge the gap between them and data scientists. Introducing PixieDust from its creator, the book is a great desk companion for the accomplished Data Scientist. Some fluency in data interpretation and visualization is assumed. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development.
Hands On Data Preprocessing In Python
DOWNLOAD
Author : Roy Jafari
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-01-21
Hands On Data Preprocessing In Python written by Roy Jafari and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-21 with Computers categories.
Get your raw data cleaned up and ready for processing to design better data analytic solutions Key FeaturesDevelop the skills to perform data cleaning, data integration, data reduction, and data transformationMake the most of your raw data with powerful data transformation and massaging techniquesPerform thorough data cleaning, including dealing with missing values and outliersBook Description Hands-On Data Preprocessing is a primer on the best data cleaning and preprocessing techniques, written by an expert who's developed college-level courses on data preprocessing and related subjects. With this book, you'll be equipped with the optimum data preprocessing techniques from multiple perspectives, ensuring that you get the best possible insights from your data. You'll learn about different technical and analytical aspects of data preprocessing – data collection, data cleaning, data integration, data reduction, and data transformation – and get to grips with implementing them using the open source Python programming environment. The hands-on examples and easy-to-follow chapters will help you gain a comprehensive articulation of data preprocessing, its whys and hows, and identify opportunities where data analytics could lead to more effective decision making. As you progress through the chapters, you'll also understand the role of data management systems and technologies for effective analytics and how to use APIs to pull data. By the end of this Python data preprocessing book, you'll be able to use Python to read, manipulate, and analyze data; perform data cleaning, integration, reduction, and transformation techniques, and handle outliers or missing values to effectively prepare data for analytic tools. What you will learnUse Python to perform analytics functions on your dataUnderstand the role of databases and how to effectively pull data from databasesPerform data preprocessing steps defined by your analytics goalsRecognize and resolve data integration challengesIdentify the need for data reduction and execute itDetect opportunities to improve analytics with data transformationWho this book is for This book is for junior and senior data analysts, business intelligence professionals, engineering undergraduates, and data enthusiasts looking to perform preprocessing and data cleaning on large amounts of data. You don't need any prior experience with data preprocessing to get started with this book. However, basic programming skills, such as working with variables, conditionals, and loops, along with beginner-level knowledge of Python and simple analytics experience, are a prerequisite.